
UNIVERSIDADE DE LISBOA
FACULDADE DE CIÊNCIAS

Adding Dependent Types to Class-based Mutable Objects

Doutoramento em Informática
Ciência da Computação

Joana Correia Campos

Tese orientada por:
Prof. Doutor Vasco Manuel Thudichum de Serpa Vasconcelos

Documento especialmente elaborado para a obtenção do grau de doutor

2018

UNIVERSIDADE DE LISBOA
FACULDADE DE CIÊNCIAS

Adding Dependent Types to Class-based Mutable Objects

Doutoramento em Informática
Ciência da Computação

Joana Correia Campos

Tese orientada por:
Prof. Doutor Vasco Manuel Thudichum de Serpa Vasconcelos

Júri
Presidente:

• Doutor Nuno Fuentecilla Maia Ferreira Neves, Professor Catedrático
Faculdade de Ciências da Universidade de Lisboa

Vogais:

• Doutor Edwin Brady, Lecturer
Faculty of Science da University of St Andrews, Reino Unido

• Doutor Luı́s Manuel Marques da Costa Caires, Professor Catedrático
Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa

• Doutor Jorge Miguel Matos Sousa Pinto, Professor Associado com Agregação
Escola de Engenharia da Universidade do Minho

• Doutor Vasco Manuel Thudichum de Serpa Vasconcelos, Professor Catedrático
Faculdade de Ciências da Universidade de Lisboa (orientador)

• Doutor Alysson Neves Bessani, Professor Associado
Faculdade de Ciências da Universidade de Lisboa

Documento especialmente elaborado para a obtenção do grau de doutor

2018

Abstract

In this thesis, we present an imperative object-oriented language featuring a dependent
type system designed to support class-based programming and inheritance. The system
brings classes and dependent types into play so as to enable types (classes) to be refined by
value parameters (indices) drawn from some constraint domain. This combination allows
statically checking interesting properties of imperative programs that are impossible to
check in conventional static type systems for objects.

From a pragmatic point of view, this work opens the possibility to combine the scal-
ability and modularity of object orientation with the safety provided by dependent types
in the form of index refinements. These may be used to provide additional guarantees
about the fields of objects, and to prevent, for example, a method call that could leave an
object in a state that would violate the class invariant. One key feature is that the pro-
grammer is not required to prove equations between indices issued by types, but instead
the typechecker depends on external constraint solving. From a theoretic perspective, our
fundamental contribution is to formulate a system that unifies the three very different fea-
tures: dependent types, mutable objects and class-based inheritance with subtyping. Our
approach includes universal and existential types, as well as union types. Subtyping is
induced by inheritance and quantifier instantiation. Moreover, dependent types require
the system to track type varying objects, a feature missing from standard type systems in
which the type is constant throughout the object’s lifetime. To ensure that an object is
used correctly, aliasing is handled via a linear type discipline that enforces unique refer-
ences to type varying objects. The system is decidable, provided indices are drawn from
some decidable theory, and proved sound via subject reduction and progress. We also
formulate a typechecking algorithm that gives a precise account of quantifier instantia-
tion in a bidirectional style, combining type synthesis with checking. We prove that our
algorithm is sound and complete.

By way of example, we implement insertion and deletion for binary search trees in
an imperative style, and come up with types that ensure the binary search tree invariant.
To attest the relevance of the language proposed, we provide a fully functional prototype
where this and other examples can be typechecked, compiled and run. The prototype can
be found at http://rss.di.fc.ul.pt/tools/dol/.

Keywords: Dependent types, object-oriented programming, type systems, mutable
objects

i

http://rss.di.fc.ul.pt/tools/dol/

Resumo

Os sistemas de tipos generalizados em linguagens de programação do tipo Java são
eficazes na verificação de invariantes simples, impedindo, por exemplo, que um inteiro
seja copiado para uma referência do tipo string. No entanto, muitos erros comuns, que
podem ser detectados em tempo de compilação, não são tratados adequadamente por
sistema de tipos estáticos de linguagens de programação convencionais. Nesta categoria
de erros incluem-se referências null tantas vezes (incorrectamente) usadas para invocar
métodos ou aceder a atributos, e chamadas de métodos que deixam os objectos num estado
que viola os invariantes de classe. Linguagens do tipo Java são capazes de assinalar
situações em que referências null estão a ser usadas no lugar de objectos, muito embora
apenas o façam em tempo de execução. Do mesmo modo, pressupostos errados sobre
o estado dos objectos podem causar erros em tempo de execução, ou não ser de todo
detectados, devolvendo resultados errados ou inesperados.

A teoria de tipos aplicada a linguagens de programação tem-se dedicado ao longo das
últimas décadas a estudar mecanismos de abstracção que descrevem comportamentos de
programas. Neste contexto, os tipos dependentes são um mecanismo poderoso, já que a
abstracção subjacente (dependências de termos que definem propriedades observáveis em
tempo de execução) oferece uma grande precisão. Os tipos dependentes foram aplicados
com sucesso em linguagens lógicas e funcionais [Augustsson, 1998, Xi and Pfenning,
1999, McBride, 2004, Flanagan, 2006, Bove et al., 2009], existindo poucas contribuições
no âmbito do paradigma imperativo [Xi, 2000, Condit et al., 2007]. Desconhecem-se
trabalhos no contexto de programação orientada a objectos com estado mutável.

Esta tese visa preencher esta lacuna, estudando uma solução para integrar tipos de-
pendentes numa linguagem de objectos imperativa no sentido de a tornar mais precisa
e segura. A linguagem proposta explora a capacidade expressiva da teoria dos tipos de-
pendentes para especificação e correcção no contexto do paradigma orientado a objectos –
especificação no sentido em que os tipos dependentes dão alguma indicação do estado dos
objectos e dos métodos que podem ser invocados (ao contrário dos tipos convencionais
que não têm essa capacidade expressiva); correcção na medida em que os programas im-
plementados na linguagem proposta não têm erros em tempo de execução.

O trabalho contribui com a definição de uma pequena linguagem orientada a objectos
com estado mutável e tipos dependentes, um sistema de tipos, uma semântica operacional

iii

e a prova de soundness, e um sistema de tipos algorı́tmico, implementado num compi-
lador.

DOL. A integração de tipos dependentes numa linguagem de programação tem assum-
ido duas formas distintas: dependência total de termos arbitrários da linguagem, o que
requer o desenvolvimento de estratégias que assegurem a terminação de programas (uma
vez que a equivalência arbitrária de termos é em geral indecidı́vel), ou separação de fases,
restringindo o domı́nio dos termos dos quais os tipos dependem. A linguagem DOL (De-
pendent Object-oriented Language) inspira-se na abordagem adoptada pela linguagem
DML [Xi, 2007], optando pela segunda forma de integração de tipos dependentes, através
da qual os tipos dependem de termos especiais, chamados ı́ndices, que pertencem a um
domı́nio restrito. De realçar que restringir a linguagem de ı́ndices a um domı́nio decidı́vel,
nomeadamente desigualdades sobre inteiros, é um requisito para obter um sistema de tipos
decidı́vel.

Em termos concretos, pode estabelecer-se um paralelo com os genéricos de linguagens
do tipo Java, que permitem especificar tipos que são parâmetros de classes e métodos; os
tipos dependentes na linguagem DOL permitem que ı́ndices sejam parâmetros de classes
e métodos, usados na especificação formal de invariantes de forma não intrusiva. Por
exemplo, class Account〈b:natural〉 {...} , onde natural é um tipo refinado que abrevia {x:

integer | x≥0}, é a declaração de uma classe indexada que representa uma conta bancária,
sendo o invariante introduzido pela variável de ı́ndice b. Neste contexto, Account rep-
resenta uma famı́lia de classes, o que significa que os tipos Account〈0〉, Account〈1〉, ...

obtidos por substituição de b por valores concretos, são tipos possı́veis para instâncias
desta famı́lia. Com classes indexadas, os programadores podem implementar uma conta
bancária que, por definição, não suporta saldo negativo; código cliente é impedido em
tempo de compilação do uso indevido dos métodos oferecidos pela classe.

Uma consequência da combinação de objectos mutáveis e tipos dependentes é a ne-
cessidade de garantir a correcção do sistema de tipos em caso de aliasing: se o objecto
original muda, aceder ao alias pode produzir um resultado inesperado. O controlo deste
tipo de situações é efectuado na linguagem DOL através de uma disciplina de tipos lin-
eares, que impõe referências únicas a objectos com tipos variáveis. Em paralelo, coexiste
na linguagem a categoria distinta de objectos partilhados, com tipos invariantes, mas que
não pode subverter o sistema linear.

A linguagem oferece ainda suporte para herança, desde que o subtipo satisfaça as
restrições de ı́ndice definidas pela superclasse, e as especificações herdadas tenham sig-
nificado no contexto da subclasse. A tı́tulo de exemplo, a classe Account pode ser es-
tendida por uma subclasse que adiciona novos atributos e os relaciona com o saldo da
superclasse. Para demonstrar a expressividade da linguagem através exemplos mais com-
plexos, apresenta-se a implementação de uma árvore de pesquisa binária mutável, cujos

iv

tipos são capazes de garantir o invariante associado a esta estrutura de dados.

Sistema Formal. Do ponto de vista teórico, a linguagem formal é semelhante à lin-
guagem dos exemplos sem o “açúcar sintáctico”. Para facilitar as provas, utiliza-se como
ponto de partida a linguagem base de Gay et al. [2015], na qual os tipos de sessão são
substituı́dos por tipos dependentes e à qual é adicionada herança. A linguagem definida
nesta tese estende com ı́ndices a noção de tipos de classe do Java da forma Cī. Da teoria
de tipos dependentes, é generalizado o tipo de função no tipo dependente Πa : I.T no
qual o tipo T pode depender do valor do argumento a do tipo de ı́ndice I , pertencente a
um domı́nio de restrições. Do mesmo modo, a linguagem formal define o tipo soma de-
pendente, que assume a forma Σa : I.T . A linguagem inclui ainda tipos união (T + U),
que eliminam a necessidade de existir um valor null em DOL e de lidar com referências
não definidas, além de permitirem agrupar classes independentes.

O sistema de tipos revela um conjunto de propriedades desejáveis, nomeadamente
subject reduction e progresso, que, em conjunto, provam que os tipos dos objectos de-
screvem os seus valores em tempo de execução, que nunca existe mais do que uma re-
ferência para um objecto linear e que nenhum alias produz um valor de tipo inesperado.

Para além do sistema de tipos declarativo, é apresentado um sistema algorı́tmico que,
com base nas ideias desenvolvidas por Dunfield and Krishnaswami [2016], fornece re-
gras precisas para a instanciação de quantificadores. O sistema algorı́tmico utiliza ainda
a técnica de tipificação bidireccional que combina a sı́ntese de tipos com a verificação
de termos de encontro a tipos conhecidos. O resultado é um algoritmo apto a ser imple-
mentado. É ainda apresentada a prova de correcção do sistema algorı́tmico em relação ao
sistema declarativo.

Protótipo. Com base no sistema algorı́tmico, foi implementado um compilador, onde
todos os exemplos apresentados na tese podem ser verificados, compilados e executa-
dos. A verificação de restrições é parte integrante da verificação de tipos, e completa-
mente transparente para o programador. O typechecker recorre ao verificador de teore-
mas Z3 [de Moura and Bjørner, 2008] através de uma interface directa.

A implementação disponibiliza ainda um plugin para o Eclipse desenvolvido em Xtext
[2017]. Embora generalizado no contexto de linguagens orientadas a objectos, o uso de
ferramentas de desenvolvimento em linguagens com tipos dependentes é uma novidade.
O ambiente de desenvolvimento inclui um assistente de código para programas DOL,
a verificação de erros on-the-fly, e a geração de código-fonte na forma de classes Java
que podem ser compiladas e executadas. O protótipo pode ser encontrado em http:

//rss.di.fc.ul.pt/tools/dol/.

Palavras-chave: Tipos dependentes, programação orientada a objectos, sistemas de
tipos, objectos mutáveis

v

http://rss.di.fc.ul.pt/tools/dol/
http://rss.di.fc.ul.pt/tools/dol/

Acknowledgements

I am grateful to Vasco Vasconcelos for supervising my graduate studies, for always

being available to discuss ideas, and for his wisdom, attention to detail and rigour. I thank

Edwin Brady, Luı́s Caires, Jorge Sousa Pinto and Alysson Benassi for agreeing to be my

thesis jury and for helpful and detailed comments.

Many thanks to Antónia Lopes, Alcides Fonseca and to members of LaSIGE (Univer-

sidade de Lisboa) for offering interesting perspectives on the work that led to this thesis.

I thank Francisco Martins, César Santos and Fábio Ferreira for their help with making

DOL available on the Internet.

vii

Contents

Abstract i

Resumo iii

Acknowledgements vii

Contents ix

List of Figures xiii

List of Judgements xv

1 Introduction 1

1.1 Overview . 4

1.2 Reader’s Guide . 6

2 DOL by Example 9

2.1 Indexed Classes . 9

2.2 Bank Account . 10

2.2.1 State Modifying Methods . 11

2.2.2 Base Types and Literals . 13

2.2.3 Controlled Aliasing . 13

2.2.4 Inheritance and Subtyping . 14

2.3 Binary Search Tree . 17

2.3.1 BST Insertion . 19

2.3.2 BST Deletion . 21

2.4 DOL Code Example: Binary Search Tree 24

ix

3 The DOL Language 27

3.1 Syntax . 28

3.1.1 Types . 30

3.1.2 Terms . 30

3.1.3 Index Refinements . 31

3.1.4 Additional Syntax Not Available to Programmers 31

3.2 Static Semantics . 34

3.2.1 Index Typing . 34

3.2.2 Index Substitution . 36

3.2.3 Kinding . 37

3.2.4 Subtyping . 38

3.2.5 Auxiliary Functions and Predicates 40

3.2.6 Term Typing . 42

3.2.7 Program Typing . 47

3.2.8 Runtime Term Typing . 49

3.3 Operational Semantics . 50

4 Type Soundness 53

4.1 State and Heap Typing . 54

4.2 Properties of Typing . 56

4.2.1 Inversion . 56

4.2.2 Exchange and Weakening . 57

4.2.3 Substitution . 58

4.2.4 Agreement . 60

4.2.5 Soundness of Function mtype 61

4.3 Hiding Field Typings . 63

4.4 Properties of Evaluation Contexts . 64

4.5 Subject Reduction . 67

4.6 Progress . 81

5 Algorithmic Typechecking 87

5.1 Algorithmic Type System . 87

5.1.1 Algorithmic Type Formation . 89

5.1.2 Quantifier Instantiation . 89

5.1.3 Algorithmic Subtyping . 92

x

5.1.4 Bidirectional Typechecking . 94

5.2 Correctness of the Algorithmic System 98

5.2.1 Soundness . 100

5.2.2 Completeness . 103

5.3 Implementation . 104

5.3.1 DOL IDE . 106

5.3.2 Local Variables . 106

5.3.3 Constraint Solving . 107

5.3.4 Error Reporting . 107

6 Related Work 109

6.1 Dependent Types . 109

6.1.1 Full-spectrum Dependent Types 110

6.1.2 Domain-specific Logics . 110

6.1.3 Languages with Phase Separation 111

6.1.4 Other Forms of Dependent Types 112

6.2 Other Approaches to Program Verification 112

6.3 Affine Types . 113

6.4 Ownership of Objects . 114

7 Conclusion 115

Bibliography 117

xi

List of Figures

2.1 A dependently-typed bank account . 10

2.2 “Interfaces” of native Integer and Boolean classes 13

2.3 A class derived from Account . 15

2.4 Classes that implement a dependently-typed binary search tree 17

2.5 The diagrammatic representation of type Node〈2,5,8〉 18

3.1 Top-level syntax . 28

3.2 Extended syntax . 32

3.3 Formation rules for index types, propositions and contexts 34

3.4 Index subtyping rules . 35

3.5 Typing rules for index terms . 35

3.6 Typing rules for substitution formation 36

3.7 Kind and type formation rules . 37

3.8 Subtyping rules . 39

3.9 Auxiliary functions and predicates . 41

3.10 Formation rules for object contexts . 42

3.11 Typing rules for paths . 42

3.12 Typing rules for terms in the top-level language 43

3.13 Typing rules for program formation . 48

3.14 Typing rules for runtime terms . 49

3.15 Reduction rules for sequenced object creation 50

3.16 Reduction rules for states . 51

3.17 Two examples of reduction and typing 52

4.1 Dependency structure of the lemmas that support subject reduction 54

4.2 Typing rules for heaps and states . 55

5.1 Algorithmic type formation rules . 90

xiii

5.2 Rewrite rules to isolate an existential index variable 90

5.3 Index instantiation and equality rules . 91

5.4 Algorithmic subtyping rules . 93

5.5 Algorithmic formation rules for object contexts 94

5.6 Type synthesis rules for paths . 94

5.7 Type synthesis and type checking rules for terms 96

5.8 Algorithmic typing rules for program formation 97

5.9 Two examples of error reporting in DOL 105

xiv

List of Judgements

∆ ` I Index type formation Figure 3.3

∆ ` p Proposition formation Figure 3.3

` ∆ Index context formation Figure 3.3

∆ ` I <: J Index subtyping Figure 3.4

∆ ` i : I Index typing Figure 3.5

∆1 ` ∆2 : θ Substitution formation Figure 3.6

∆ ` K Kind formation Figure 3.7

∆ ` T : K Type formation Figure 3.7

∆ ` T <: U Subtyping Figure 3.8

∆ ` Γ Context formation Figure 3.10

∆1; Γ ` r : T a ∆2 Path typing Figure 3.11

∆1; Γ1 ∗ r1 ` t : T a ∆2; Γ2 ∗ r2 Term typing Figure 3.12

`C M Method formation Figure 3.13

∆ `T l : U Member formation Figure 3.13

` L Class formation Figure 3.13

` P Program formation Figure 3.13

∆1; Γ1 ∗ r1 ` t̄ : T̄ a ∆2; Γ2 ∗ r2 Seq. term typing Figure 3.14

S1 −→ S2 State reduction Figure 3.16

(h1 ∗ r, new C̄()) −→ (h2 ∗ r, ō) State reduction for object creation Figure 3.15

∆; Γ ` h Heap formation Figure 4.2

∆1; Γ1 ` S : T a ∆2; Γ2 ∗ r State typing Figure 4.2

∆1; Γ1 ` (h ∗ r, t̄) : T̄ a ∆2; Γ2 ∗ r State typing for seq. terms Figure 4.2

∆ . K Alg. kinding Figure 5.1

∆ . T : K Alg. type formation Figure 5.1

∆1 ` â := i a ∆2 Quantifier instantiation Figure 5.3

∆1 ` i ≡ j a ∆2 Index term equivalence Figure 5.3

∆1 ` p1 ≡ p2 a ∆2 Proposition equivalence Figure 5.3

∆1 ` ī ≡ j̄ a ∆2 Seq. index term equivalence Figure 5.3

∆1 ` T <: U a ∆2 Alg. subtyping Figure 5.4

∆ . Γ Alg. context formation Figure 5.5

xv

∆1; Γ ` r ↑ T a ∆2 Type synthesis for paths Figure 5.6

∆1; Γ1 ` t ↑ T a ∆2; Γ2 Type synthesis for terms Figure 5.7

∆1; Γ1 ` t ↓ T a ∆2; Γ2 Type checking for terms Figure 5.7

.C M Alg. method formation Figure 5.8

∆ .T l : U Alg. member formation Figure 5.8

. L Alg. class formation Figure 5.8

. P Alg. program formation Figure 5.8

xvi

Chapter 1

Introduction

This thesis develops Dependent Object-oriented Language (DOL), a programming lan-

guage featuring dependent types, mutable objects and class-based inheritance with sub-

typing. It provides a solid type system and an operational semantics for DOL, and de-

scribes a typechecking algorithm implemented in a proof-of-concept prototype.

Traditional type systems have been shown to be effective for verifying basic invariants,

but are somehow limited in the kind of properties they can express. In object-oriented

languages, in particular, programmers typically work in the context of informally and

imprecisely specified behavioural aspects, most often only described in documentation.

Many common errors, some of which may be observable at compile time, cannot be

dealt with adequately by the static type system of a conventional programming language.

Examples of such errors include dereferencing null, say, by taking an element of an empty

data structure, or a method call that leaves an object in a state that violates the class

invariant. Java-like languages will immediately halt at unsafe null values, yet this comes

at the expense of runtime checks. Similarly, wrong assumptions about the state of an

object may cause a runtime error, or not may not be detected at all, and simply return a

wrong or unexpected result.

Type theory for programming has been concerned over the past decades with studying

abstraction mechanisms of various sorts that describe program behaviours. Studied ex-

tensively in this context is the topic of dependent types, whose growing interest suggests

that the underlying abstraction mechanism (dependencies on terms that assert additional

properties about programs) may be useful when added to conventional programming lan-

guages. In particular, dependent types in the setting of object-oriented languages have the

potential of filling the wide gap between simple invariants enforced by conventional type

systems and more expressive (and complex) ones supported by verification techniques

included in static checking tools, such as ESC [Leino, 2001] and Spec] [Barnett et al.,

2005], and explored in the context of modular reasoning about multi-object invariants

1

2 CHAPTER 1. INTRODUCTION

and ownership relations [Müller, 2002, Barnett et al., 2004, Müller et al., 2006, Summers

and Drossopoulou, 2010, Balzer and Gross, 2011].

The aim of this work is therefore to study a solution, embodied in DOL, that is a first

step in the evolution of combining the scalability and modularity of object orientation with

the safety provided by dependent types. The main challenge is to integrate in a unique

system three very different features: dependent types, mutable objects, and class-based

inheritance with subtyping.

Dependent types constrain types with values that specify intrinsic properties of pro-

grams. The practical utility of dependent types has been explored with great success over

the past decades in the context of logic and functional languages [Augustsson, 1998, Xi

and Pfenning, 1999, McBride, 2004, Flanagan, 2006, Bove et al., 2009], with implemen-

tations in functional programming languages such as Agda [Norell, 2007], DML [Xi,

2007], and Idris [Brady, 2013]. Less work has been done in an imperative setting [Xi,

2000, Condit et al., 2007], and none (that we know of) in class-based object-oriented

programming with mutable objects. The reasons why dependent types benefit functional

programming – increasing expressiveness and safety – are exactly the same why they may

be useful in object-oriented programming. However, the added complexity and the chal-

lenge of combining dependent types and subtyping, a feature missing from the mentioned

dependently-typed functional languages, explain why the combination of dependent types

and object orientation is still largely unexplored ground in the context of type theory for

programming.

Inspired by generics in Java-like languages that were introduced to enable types to be

parameters to classes and methods, we introduce a restricted form of dependent types to

enable special terms, called indices, to be parameters to classes and methods. The type

List 〈n〉 of lists of length n should look natural, even for an object-oriented programmer,

being just another kind of polymorphism. Another example is the type Account〈b〉 of bank

accounts with balance b. The programmer abstracts the class declaration on the Account’s

balance which in DOL becomes

class Account 〈b : natural 〉 {
balance : I n tege r 〈b 〉
. . .

}

where natural is a subset type that abbreviates {x:integer | x≥0}. The programmer then

uses the index variable b to sharpen the type of fields and methods defined in Account,

so that the typechecker will be able to enforce through types a behaviour that forbids

overdrafts. We say that Account defines a family of classes representing bank accounts

whose instances can have many types, including the concrete type Account〈100〉 obtained

3

by instantiating b with 100. Like generics, types in DOL support a variety of arguments.

The difference is that the arguments to types in DOL are index terms that satisfy the

specified constraints.

Mutable objects are closely linked to what objects are intended to be, that is, entities

with private state and an interface that specifies the messages (or method calls) they are

willing to accept. In certain states, some methods must not be available at the risk of

violating object invariants. Dependent types allow the programmer to specify method

availability using fine-grained method signatures. For an withdraw method in the Account

class, the signature should be roughly “withdraw takes an Integer〈m〉where 0≤m≤b on any

Account〈b〉 that becomes Account〈b−m〉”. This enables the typechecker to statically track

objects and any state change, guaranteeing that calling withdraw with an invalid argument

leads to a type error caught by the compiler. For example, the following trivial client code

in DOL will simply fail and show a type error:

acc := new Account () ; / / acc : Account 〈0 〉
acc . depos i t (100) ; / / acc : Account 〈100 〉
acc . withdraw (105) / / Type e r r o r !

Class-based inheritance with subtyping is present in most object-oriented program-

ming languages. This feature allows code that was originally written for a given class

to be extended, and methods from the original class to be reused by subclasses, as well

as offering the convenience of type substitutivity. The interplay of dependent types and

inheritance with subtyping turns out to be substantially more challenging than the study

of each feature taken separately. Still, our system can capture in types the discipline of

the “safe substitutability principle” [Liskov and Wing, 1994]. For example, a subclass

PlusAccount inherits the superclass fields and methods, adds its own, and redefines meth-

ods, as long as it satisfies the constraints of the superclass. We write this as follows:

class PlusAccount 〈s , c , b : natural 〉 extends Account 〈b 〉 {
savings : I n tege r 〈 s 〉 / / two ex t ra f i e l d s
checking : I n tege r 〈 c 〉
. . .

}

where the declaration extends Account〈b〉 allows the subtype to inherit the Account’s only

field balance, and all its methods (constructor excluded). The two new fields that describe

two portions of the balance can be related to the inherited field in method signatures in

the subclass, as we will see in the examples.

In contrast to other dependently-typed object languages such as DOT [Amin, 2016,

Rompf and Amin, 2016], a calculus that provides a type-theoretic foundation for Scala,

our language formalises mutable objects and inheritance. As we will elaborate, DOL’s

4 CHAPTER 1. INTRODUCTION

type system is able to track mutation through the types of fields that may change through-

out the life of an object. On the other hand, mutable state is not modelled in DOT. Instead,

it is proposed as an extension to the operational semantics by providing a subtype of the

type in the store typing, which remains invariant under reads and updates.

1.1 Overview

In this thesis, we show how to make the three features – dependent types, mutable objects

and class-based inheritance with subtyping – coexist in object-oriented programming.

We give an overview and rationale of the novelties and strategies devised for DOL, before

getting into the details of the examples, typing rules and algorithm.

DOL. There are two basic approaches to the topic of introducing dependent types, and

any type theory for that matter, in programming: starting with a type theory and turning

it into a programming language, or starting with a language and adding type theoretic

features that make it safer. This thesis takes the latter approach. DOL is an object-oriented

language designed along the lines of Gay et al. [2015], with session types removed. The

language, meant to support mutable state, allows a natural integration of dependent types

in the form of value parameters (indices) that are used for specification and correctness –

specification in the sense that dependent types in DOL give some indication of the valid

state of objects and the usage intended by the programmer; correctness in that programs

in DOL do not encounter runtime errors.

A difficult question is what kind of properties should indices be allowed to capture.

Constraints have to be enforced by the type system, and so the requirements of decidabil-

ity and efficiency of typechecking must be taken into account. It turns out that restricting

the domain of the constraint language is a suitable choice to render a type system decid-

able. Drawing inspiration from DML [Xi and Pfenning, 1999], we use index refinements

to achieve a separation between index terms and computation terms, refining class types

with indices drawn from a decidable constraint domain. We give examples using the in-

teger and boolean domains, which are by far the most explored constraint theories. A key

feature is that our language does not require the programmer to prove equations between

indices issued by types, but instead relies on an external constraint solver to compute them

efficiently during typechecking.

Given that objects are mutable, we must allow their types to vary throughout the pro-

gram so that the compiler can record changes and detect errors by typecheking. The type

system is sound, relying on indices but also on method signatures in which the program-

mer describes the input and output types of the receiver. Moreover, aliasing in a language

1.1. OVERVIEW 5

that allows types to change can result in a program “getting stuck”: if an aliased object

changes, reading from the alias will produce an unexpected result. In DOL, some control

of aliasing is handled by the type system via a linear discipline that enforces unique ref-

erences to type varying objects. A distinct category of type invariant, shared objects, is

allowed to coexist, but cannot subvert the linear system.

DOL also provides support for single class inheritance as long as the subtype satisfies

the index constraints defined by its supertype, and the inherited specifications remain

meaningful in the context of the subclass.

At this point, it may be pointed out that the formulation of DOL depends heavily

on formalisms that compromise the language usability, namely by means of an index

language with limited expressivity and of linear control of objects. To this, we argue that

DOL is flexible for a dependently-typed language: programmers may start with standard

types, writing code in an imperative style, and add more type information so as to gain

additional guarantees. Towards a full programming language, we could easily scale to

more expressive index languages at the cost of decidable typechecking, and we could use

existing mechanisms for more flexible control of aliasing. Alternatives to our approach

are discussed in related work.

To attest the relevance of our language, we have implemented a prototype compiler

for DOL that includes a plugin for the Eclipse IDE, a development tool widely used in the

context of object-oriented languages but still new for dependently-typed languages. This

additional material is available at http://rss.di.fc.ul.pt/tools/dol/. All

the examples in this thesis have been run, compiled and executed in the latest version of

the prototype at the time of writing.

Formal System. DOL’s core language is the same as the language from the examples

without the syntactic sugar. It extends with indices the Java notion of class types that take

the form of Cī. From the dependent type theory, it generalises the simple function space

to a dependent function space Πa : I.T where the result type T can depend on the value

of the argument a, restricted to special terms of index type I . Similarly, dependent sum

types, written Σa : I.T , generalise ordinary product types restricted to some constraint

domain. The language also includes union types of the form T + U that eliminate the

need of an unsafe null value, and can be used to group independently developed classes.

The type system studied in this thesis involves a large number of judgments from

where emerges a stratification: terms in the object language have types that contain in-

dices; indices also have types (often called sorts in the literature); indices and terms in

the object language are distinct. We include subtyping in our typing rules induced by

inheritance and quantifier instantiation, but this combination significantly complicates the

http://rss.di.fc.ul.pt/tools/dol/

6 CHAPTER 1. INTRODUCTION

development of the meta-theory. We prove that the system possesses desirable properties,

such as type soundness, expressed via subject reduction and progress. As a result, static

typing guarantees runtime safety properties, namely that the types of objects describe their

runtime values, that there never exists more than one reference to a linear object, and that

all aliasing never produce a value of unexpected type.

While the declarative system is natural to explain, it is difficult to implement, and

some features are hard to analyse directly, because of the use of existential and univer-

sal types. We formulate an algorithmic type system for DOL that gives a specification

for quantifier instantiation based on the techniques of Dunfield and Krishnaswami [2013,

2016], and applies bidirectional typechecking [Pierce and Turner, 2000] which distin-

guishes the two distinct modes of type synthesis and checking against a known type. The

algorithm is both simple to understand and to implement. We prove that typechecking is

sound and complete with respect to the declarative system.

Publications. The following are the source of improved and adapted material (to the

context of dependent types in the case of the second reference) presented in this thesis:

• Joana Campos and Vasco T. Vasconcelos. Imperative objects with dependent types.

In Formal Techniques for Java-like Programs, pages 2:1–2:6, 2015

• Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Giuseppe Castagna,

Pierre-Malo Denilou, Simon J. Gay, Nils Gesbert, Elena Giachino, Raymond Hu,

Einar Broch Johnsen, Francisco Martins, Viviana Mascardi, Fabrizio Montesi, Rumyana

Neykova, Nicholas Ng, Luca Padovani, Vasco T. Vasconcelos, and Nobuko Yoshida.

Behavioral types in programming languages. Foundations and Trends in Program-

ming Languages, 3(2-3):95–230, 2016

• Joana Campos and Vasco T. Vasconcelos. Programming with mutable objects and

dependent types. In INForum. Atas do Oitavo Simpósio de Informática, 2016

1.2 Reader’s Guide

Chapter 2 motivates DOL using programming examples that describe the language from

the user’s perspective. A large example of a binary search tree implementa-

tion, modified in place, is also included.

Chapter 3 presents DOL from the perspective of its type theoretic features, giving the

static and operational semantics.

1.2. READER’S GUIDE 7

Chapter 4 describes several properties of DOL, and provides the proof of soundness via

subject reduction and progress theorems

Chapter 5 defines a set of algorithmic typing rules, and proves that typechecking is

sound and complete with respect to the declarative system.

Chapter 6 discusses related work, focusing on dependent types and pointing extensions

to the type system of DOL.

The reader should have a solid grasp of type theory as applied to programming lan-

guages [Pierce, 2002].

Chapter 2

DOL by Example

This chapter gives a description of the language from the programmer’s perspective, while

subsequent chapters provide the technical details.

Chapter Outline. This chapter consists of three sections:

• Section 2.1 explains the overall concept of object-oriented programming with de-

pendent types in the form of indexed classes.

• Section 2.2 motivates the interplay between classes and indices using a bank ac-

count class that has mutable state and a subclass which demonstrates DOL’s support

for inheritance.

• Section 2.3 presents an implementation of insertion and deletion for binary search

trees in an imperative style that relies on types to ensure the binary search tree

invariant.

2.1 Indexed Classes

A class in DOL is declared just like any other class in a Java-like language, except that

index variables may be introduced in the header and be used within the class to con-

strain member types. The class body contains fields and methods, including a constructor

method named init . Like Java, DOL supports single class inheritance using the optional

extends declaration. If omitted, the class is derived from the default superclass Top, a con-

crete class which has no fields or methods, except for the constructor. Methods may also

be indexed, introducing typed variables that may be used to constrain types in method

signatures.

9

10 CHAPTER 2. DOL BY EXAMPLE

1 class Account 〈b : natural 〉 {
2 balance : I n tege r 〈b 〉 / / the only f i e l d
3
4 i n i t () : Account 〈0 〉 =
5 balance := 0
6
7 〈m: natural 〉
8 [Account 〈b 〉 〈b +m〉]
9 depos i t (amount : I n tege r 〈m〉) =

10 balance := balance + amount
11
12 〈m: natural {m≤ b} 〉
13 [Account 〈b 〉 〈b−m〉]
14 withdraw (amount : I n tege r 〈m〉) =
15 balance := balance − amount
16
17 getBalance () : I n tege r 〈b 〉 =
18 balance / / r e t u r n balance
19 }

Figure 2.1: A dependently-typed bank account

As noted in the previous chapter, we follow a style of type dependencies whereby

index terms are used only to constrain types, being syntactically separate from the lan-

guage of objects. Thus, types in DOL cannot depend directly on the value of a field, for

example, neither can an index variable be used as a parameter to a method. Instead, index

terms are the only values that may inhabit types, having no place in the separate world of

computations.

2.2 Bank Account

In Figure 2.1 we define the indexed class Account which includes the usual three methods

– deposit, withdraw and getBalance. The index variable b of type natural is declared at the

beginning of the class as a parameter in angle brackets. Programmers gain additional

safety guarantees with the possibility of indexing classes and using DOL’s richer type

system. Notice that if we omit the extra type annotations in the example, we get plain

Java-like code, with Account being simply a class type.

However, when indexed, we regard the class name Account as denoting a family of

classes. Instantiations, or concrete classes, represent bank accounts that cannot be over-

drawn, and may have many types, namely Account 〈0〉, Account〈1〉, ... where the occur-

rence of the index variable introduced in the class header is replaced by the correspond-

ing value (an index term). The special init method behaves as a typical constructor that

2.2. BANK ACCOUNT 11

initialises fields, creating a fresh object assigned the proper (or concrete) type Account〈0〉

(line 4). For example, whenever init is invoked as in

acc := new Account () / / acc : Account 〈0 〉

no actual index parameter is passed to the constructor, since the compiler will be able

to read the type Account〈0〉 from the method signature. As we will see below in detail,

one consequence of instantiations at different types is that the compiler must track state

changes throughout the program. The preceding example may continue as follows:

acc := new Account () ; / / acc : Account 〈0 〉
acc . depos i t (100) ; / / acc : Account 〈100 〉
acc . withdraw (30) / / acc : Account 〈70 〉

The special index variable b, introduced in the class header, is used in the declared type

of field balance – Integer〈b〉 – representing the field’s runtime value, enforced at compile

time to be a natural number. The Account class is mutable, so internally the typechecker

replaces occurrences of the index variable b by the corresponding value, with the field type

becoming Integer〈0〉 at object creation, changing to Integer〈100〉 after the call to the deposit

method in the snippet above, and then to Integer〈70〉 after the call to method withdraw. Note

that state is indirectly exposed in types through indices, but fields are always private to a

class, even if we do not use the corresponding keyword.

2.2.1 State Modifying Methods

We can give indexed signatures to methods that are defined in indexed classes. For exam-

ple, the withdraw method is as follows:

〈m: natural {m≤ b} 〉
[Account 〈b 〉 〈b−m〉]
withdraw (amount : I n tege r 〈m〉) =

balance := balance − amount

The method must be invoked on a receiver of type Account〈b〉, accepts an amount of type

Integer〈m〉, modifies the type of the receiver from Account〈b〉 to Account〈b−m〉, and does so

for any amount that is a natural number smaller or equal to the balance. This is indicated

by the declared index variable in angle brackets at the beginning of the method signature.

The method type, written Πm : {x : integer | 0 ≤ x ≤ b}.T in the formal language, is a

universal type that binds the index variable m to a type T (where T represents the types

of the implicit and explicit parameters and the return type from the example), so that we

can mention m in T . The scope of the index variable m is therefore local; it may appear

in the method signature, but not outside. The type [Account〈b〉 〈b−m〉], read “Account〈b〉

becomes Account〈b−m〉”, is an abbreviation for a pair of types. The first type is seen as the

12 CHAPTER 2. DOL BY EXAMPLE

input type of the (implicit) receiver and the second one is viewed as its output type. This

pair of types induces a kind of usage protocol for withdrawing. In other words, an instance

of Account may call withdraw only if passing an amount that does not exceed its balance.

If this condition is satisfied, the assignment is evaluated and the balance field is updated,

internally becoming Integer〈b−m〉. As mentioned earlier, the compiler tracks changes to

an object through its “private” fields, with state being somewhat exposed through indices

– notice that the operation is reflected in the output type Account〈b−m〉. Finally, when a

method does not explicitly declare a return type, the typechecker assumes the supertype

Top.

To illustrate the precision of the types in DOL, here is a variant of the preceding

example, changed by adding a second call to method withdraw that violates the object

invariant:

acc := new Account () ; / / acc : Account 〈0 〉
acc . depos i t (100) ; / / acc : Account 〈100 〉
acc . withdraw (70) ; / / acc : Account 〈30 〉
acc . withdraw (50) / / Type e r r o r : 50 > 30

No doubt, the second and third lines are fine (because 0 ≤ 70 ≤ 100), but the last line is

in error (because 50 > 30). So, the typechecker keeps track of the exact balance at each

point in the program, and any attempt to break the object invariant is promptly detected

at compile time. It should now be clear the need for DOL’s typechecker to record and

track state changes in the typing context. Without this feature, dependent types would be

useless in a language with mutable state.

Both deposit and withdraw are examples of methods that change state, which we some-

times call type varying methods. In DOL, these methods must explicitly declare the input

and output types of their implicit receivers. On the contrary, in type invariant methods,

that is, methods whose input and output types coincide, receiver types may be omitted.

Consider the getBalance method:

getBalance () : I n tege r 〈b 〉 =
balance / / r e t u r n balance

The method does not accept parameters and returns an integer of type Integer〈b〉. Because

the receiver type is omitted, it can be inferred by instantiating the class family with index

variables declared in the header. In this case, type inference yields the following type:

[Account 〈b 〉 〈b 〉]
getBalance () : I n tege r 〈b 〉 =

balance / / r e t u r n balance

2.2. BANK ACCOUNT 13

1 class I n t ege r 〈 i : integer 〉 {
2 i n i t () : I n t ege r 〈0 〉
3 〈 j : integer 〉 + (value : I n tege r 〈 j 〉) : I n tege r 〈 i + j 〉
4 〈 j : integer 〉 − (value : I n tege r 〈 j 〉) : I n tege r 〈 i − j 〉
5 〈 j : integer 〉 ≤ (value : I n tege r 〈 j 〉) : Boolean 〈 i ≤ j 〉
6 〈 j : integer 〉 ≥ (value : I n tege r 〈 j 〉) : Boolean 〈 i ≥ j 〉
7 . . .
8 }
9 class Boolean 〈b : boolean 〉 {

10 i n i t () : Boolean 〈 fa lse 〉
11 〈a : boolean 〉&&(value : Boolean 〈a 〉) : Boolean 〈b ∧ a 〉
12 〈a : boolean 〉 | | (value : Boolean 〈a 〉) : Boolean 〈b ∨ a 〉
13 . . .
14 }

Figure 2.2: “Interfaces” of native Integer and Boolean classes (an excerpt)

2.2.2 Base Types and Literals

Constants and operators are used in the programmer’s language only to make arithmetic

and logic operations look more familiar, since they are not part of DOL’s core language.

Constant 100 can be used as an argument as follows:

acc . depos i t (100)

The subtraction operator appears in the body of the withdraw method, namely

balance := balance − amount

In fact, constants and operators are desugared into object references and method calls in

the core language. Formally, Integer and Boolean, implemented natively, are families of

classes. We give in Figure 2.2 some of the signatures defined in the “interfaces” provided

by DOL. Each desugared object of a primitive class is assigned a singleton type, with

the constants used in the examples representing the values on which the types depend.

Technically, the argument 100 used in an earlier example is an object reference of type

Integer〈100〉, obtained by creating a new location, and subtraction is translated into the

call balance.minus(amount) before typecheking.

2.2.3 Controlled Aliasing

Aliasing is part of what makes mutable objects useful in programming. However, shared

state can be tricky to handle in a type system such as that of DOL, where the type of a

variable may no longer be a fixed class type; instead, it may be a (dependent) type that

changes throughout the program. In DOL, the potential sources of aliasing problems are

assignment and parameter passing. Consider assignment and what would happen if an

object reference to a bank account object was allowed to be freely shared:

14 CHAPTER 2. DOL BY EXAMPLE

a l i a s := acc ; / / acc : Account 〈70 〉 , a l i a s : Account 〈70 〉
acc . withdraw (50) ; / / acc : Account 〈20 〉 , a l i a s : Account 〈70 〉
a l i a s . withdraw (30) / / acc : Account 〈?? 〉 , a l i a s : Account 〈?? 〉

After the first call to withdraw, variable acc acquires type Account〈20〉. However, since the

compiler does not keep track of the number of references to a given object, variable alias

is still at type Account〈70〉, even though the first line makes both variables reference the

same object. So, the second call to withdraw (the one made on variable alias) will break

the object invariant. To deal with aliasing, we adopt a solution that uses linear control of

those objects defined by type varying classes. We say that a class is type varying when

at least one of its methods is type varying, giving different input and output types to its

receiver. Because the Account class is type varying as per methods deposit and withdraw,

the type system forbids creating aliases of instances of Account. Consider now how DOL’s

typechecker handles the preceding snippet:

a l i a s := acc ; / / a l i a s : Account 〈70 〉
acc . withdraw (50) ; / / Type e r r o r : acc has been consumed !
a l i a s . withdraw (30) / / a l i a s : Account 〈40 〉

Instead of creating an alias, the assignment “consumes” variable acc, removing it from

the typing context; hence, the call to withdraw in the second line is not allowed, with alias

being the only variable available in the typing context.

On the other hand, we say that a class is type invariant when its methods are type

invariant, i.e. when the input and output types coincide (or are omitted) in all methods.

Linearity is not imposed in this case, allowing objects to be freely shared. The native

Integer and Boolean provide two examples of such classes. Since each new assignment

creates a new location, instances of these classes carry their types unchanged irrespective

of being accessed or aliased.

Besides an index language with limited expressivity (restricted to the integer and

boolean domains), a linear type system is the second concession that can be pointed out

to the type system of DOL. Still, as we will see later in this chapter, we can implement

(advanced) examples in which the use of linearity is not a problem. We believe linearity

to be an orthogonal question to this thesis’ contribution of designing a dependently typed

object-oriented language. As mentioned in the previous chapter, we discuss existing al-

ternatives in Chapter 6, guiding future work towards more flexible solutions.

2.2.4 Inheritance and Subtyping

The example we now present, adapted from JML [Dhara and Leavens, 1996, Leavens

et al., 2006], illustrates how DOL can achieve the “safe substitutability principle” [Liskov

2.2. BANK ACCOUNT 15

1 class PlusAccount 〈s , c , b : natural 〉 extends Account 〈b 〉 {
2 savings : I n tege r 〈 s 〉 / / two ex t ra f i e l d s
3 checking : I n tege r 〈 c 〉
4
5 i n i t () : PlusAccount 〈 0 ,0 ,0 〉 =
6 balance , savings , checking := 0
7
8 〈m: natural 〉
9 [PlusAccount 〈s , c , b 〉 〈 s +m, c , b +m〉]

10 depos i t (amount : I n tege r 〈m〉) =
11 super . depos i t (amount) ;
12 savings := savings + amount
13
14 〈m: natural 〉
15 [PlusAccount 〈s , c , b 〉 〈s , c +m, b +m〉]
16 deposit2Checking (amount : I n tege r 〈m〉) =
17 super . depos i t (amount) ;
18 checking := checking + amount
19
20 〈m: natural {m≤ b ∧ b=s + c} 〉
21 [PlusAccount 〈s , c , b 〉 〈max(s −m, 0) ,min (c , c −m+ s) ,b−m〉]
22 withdraw (amount : I n tege r 〈m〉) =
23 super . withdraw (amount) ;
24 i f amount ≤ savings {
25 savings := savings − amount
26 } else {
27 checking := checking − amount + savings ;
28 savings := 0
29 }
30 }

Figure 2.3: A class derived from Account

and Wing, 1994] via indexed types.

The PlusAccount class given in Figure 2.3 extends Account. As usual in Java-like lan-

guages, one type is a subtype of another if they are related by the extends declaration.

In DOL, this also means that the invariant of the superclass is required to hold in this

relation. By declaring

class PlusAccount 〈s , c , b : natural 〉 extends Account 〈b 〉 { . . . }

we make the subtype inherit the Account’s only field, as well as all of its methods (except

the constructor). In PlusAccount, we declare two additional index variables, s and c, and

use them to constrain two new fields, savings and checking, that describe two portions of

the balance.

We then use the trick proposed by Dhara and Leavens [1996], Leavens et al. [2006]

of relating the two new fields in the subclass with the superclass’s field. We adapt this

device to our requirements by enforcing that b=s + c via method signatures. We override

the deposit method as follows:

16 CHAPTER 2. DOL BY EXAMPLE

〈m: natural 〉
[PlusAccount 〈s , c , b 〉 〈 s +m, c , b +m〉]
depos i t (amount : I n tege r 〈m〉) =

super . depos i t (amount) ;
savings := savings + amount

The deposit method adds the amount to the account’s balance by calling the superclass

method, and then adds it to the savings field. A new method deposit2Checking (lines 14–18)

also adds the given amount to the checking field. The withdraw method must be redefined

in order to take out the amount from each balance portion as follows:

〈m: natural {m≤ b ∧ b=s + c} 〉
[PlusAccount 〈s , c , b 〉 〈max(s −m, 0) ,min (c , c −m+ s) ,b−m〉]
withdraw (amount : I n tege r 〈m〉) =

super . withdraw (amount) ;
i f amount ≤ savings {

savings := savings − amount
} else {

checking := checking − amount + savings ;
savings := 0

}

In order to determine if the output type is valid, DOL’s typechecker gives the index equa-

tions issued by types to the external constraint solver, and asks if they hold.

Common mistakes that violate the (inherited) invariant are readily detected. For ex-

ample, the code

〈m: natural {m≤ s} 〉
[PlusAccount 〈s , c , b 〉 〈max(s −m, 0) ,min (c , c −m+ s) ,b−m〉]
withdraw (amount : I n tege r 〈m〉) = . . .

yields a type error, since a subtype cannot accept a stronger requirement, that is, it can-

not accept less arguments as valid [Liskov and Wing, 1994] (it should be clear that the

constraint m≤ s does not imply m≤b under the assumption that b=s + c).

A subtler type error is found in the following variant:

〈m: natural {m≤ b} 〉
[PlusAccount 〈s , c , b 〉 〈max(s −m, 0) ,min (c , c −m+ s) ,b−m〉]
withdraw (amount : I n tege r 〈m〉) = . . .

The problem here is that the constraint m≤b does not relate the value of amount with the

two portions of the balance, unlike the indices in the output type. Specifically, the index

refinement does not provide enough evidence that allows the typechecker to conclude,

after interaction with the solver, that the index term min(c,c−m + s) is a natural number

that can safely replace the index variable c introduced in the class header.

2.3. BINARY SEARCH TREE 17

1 class BST〈 l , u : integer 〉 {
2 r oo t : N i l + Node〈 l , k , u 〉 where k : integer { l ≤ k ≤ u} / / the only f i e l d
3
4 i n i t () : BST〈 2 ,1 〉 =
5 r oo t := new N i l ()
6
7 〈 v : integer 〉
8 [BST〈 l , u 〉 〈min (l , v) ,max(u , v) 〉]
9 i n s e r t (value : I n tege r 〈 v 〉) = . . .

10
11 〈 v : integer 〉
12 remove (value : I n tege r 〈 v 〉) = . . .
13 }
14 class N i l {
15 i n i t () : N i l = skip
16 }
17 class Node〈 l , k , u : integer { l ≤ k ≤ u} 〉 {
18 key : I n tege r 〈 k 〉 / / f i e l d s
19 l e f t : N i l + Node〈 l , k1 , u1 〉 where k1 , u1 : integer { l ≤ k1 ≤ u1 ≤ k}
20 r i g h t : N i l + Node〈 l1 , k1 , u 〉 where l1 , k1 : integer {k ≤ l 1 ≤ k1 ≤ u}
21
22 〈 v : integer 〉
23 i n i t (value : I n tege r 〈 v 〉) : Node〈v , v , v 〉 =
24 key , l e f t , r i g h t := value , new N i l () , new N i l ()
25
26 〈 v : integer 〉
27 [Node〈 l , k , u 〉 〈min (l , v) , k ,max(u , v) 〉]
28 add (value : I n tege r 〈 v 〉) = . . .
29
30 〈 v : integer 〉
31 [Node〈 l , k , u 〉 〈 l , k1 , u 〉 where k1 : integer { l ≤ k1 ≤ u }]
32 de le teCh i l d (value : I n tege r 〈 v 〉) = . . .
33 }

Figure 2.4: Classes that implement a dependently-typed binary search tree

2.3 Binary Search Tree

Binary search trees can naturally be described by the discipline of dependent types. In

fact, there has been much research on implementing ordered data structures in the con-

text of dependently-typed functional programming languages [Xi, 1998, Dunfield, 2007,

Knowles, 2014, McBride, 2014].

We use types to enforce statically the standard binary search tree property: a binary

search tree is either empty or nonempty in which case it has two subtrees that are binary

search trees, and the key in the root node of the binary search tree is greater than all

the keys appearing in its left subtree and smaller than all the keys appearing in its right

subtree. This example shows that our type system can be precise and expressive while

implementations remain as usual. The effort of programming in DOL is essentially to

18 CHAPTER 2. DOL BY EXAMPLE

52 8

22 2 88 8

Figure 2.5: The diagrammatic representation of an object of type Node〈2,5,8〉where labels
at each tree node denote the smallest and greatest keys appearing in the tree

come up with the right type.

We implement the binary search tree in an imperative style, allowing subtrees to be

modified in place. The complete code can be found at the end of this chapter. In Fig-

ure 2.4, we show the types, defining BST as the “public” family of classes that creates and

manages both empty and nonempty trees using Nil (a proper class) and Node (a family

of classes). Our binary search tree contains integer numbers included in a loose pair of

bounds 〈 l ,u:integer〉 declared in the header of BST that can be used to define an interval

[l ,u]. Any element in a tree can find a place within the minimum (l) and maximum (u)

keys.

Nullable references are commonly used in Java-like languages to build data structures,

but have been a recurring source of error (Hoare’s billion dollar mistake [Hoare, 2009]).

They are the cause of a variety of bugs, mainly because null can mean a missing value,

failure, success, it can mean almost anything. While many approaches have been pro-

posed [Fähndrich and Leino, 2003, Cielecki et al., 2006, Chalin and James, 2007], DOL

provides an elegant solution using union types (cf. Igarashi and Nagira [2006]) that en-

able programmers to build imperative linked data structures in a null-free style – object

references are, after all, the only values in DOL. Union types (denoted by T + U) repre-

sent objects that can be of any of the specified types. Note that the lack of null in DOL

means that every variable must be initialised, and that every variable of a union type must

be analysed by way of a case construct before being used.

So, class BST has a single field root that is either Nil or Node. We declare it as follows:

r oo t : N i l + Node〈 l , k , u 〉 where k : integer { l ≤ k ≤ u}

A dependent existential quantified constructor (denoted by where ...) is used to keep

track of the key, hidden in the field type, so that the binary search tree invariant can be

maintained. We write it as a dependent sum type in the formal language of the form

Σk : {x : integer | l ≤ x ≤ u}.Node l k u. Notice that this type conforms to the con-

straint (l ≤ k≤u) issued by the signature of class Node that ensures the binary search

ordered invariant.

The special init method (lines 4–5) creates an empty binary search tree to which

2.3. BINARY SEARCH TREE 19

we give the type BST〈2,1〉, making root an instance of Nil . As we will see below, when

inserting a value in an empty tree, we replace an instance of Nil with an instance of Node

with no children (a leaf). Then, when inserting in a nonempty tree, we recursively push

the requirements of data inward, requiring that the value at each node falls within the

interval [l ,u]. For example, a type BST〈2,8〉 may represent the binary search tree whose

root of type Node〈2,5,8〉 (depicted in Figure 2.5) issues the minimum and maximum keys

outward. The value 5 stored in the root is not exposed, but is internally constrained by the

tree bounds.

The Node class defines a field key, which holds the node value, and fields left and right

that may represent the two subtrees. We use union and existential types, again pushing

the data requirements inward to the types of the left and right fields. For example, the

type of the left field defined as

l e f t : N i l + Node〈 l , k1 , u1 〉 where k1 , u1 : integer { l ≤ k1 ≤ u1 ≤ k}

enforces the fact that all the values appearing in the left subtree must be in the interval

defined by [l ,k], so that the binary search tree invariant can be maintained. Similarly, the

type of the right field (line 20) enforces the fact that all the values appearing in this subtree

must be included in [k,u]. The init method (lines 22–24) creates a leaf by accepting an

integer value to be stored in the key field, making both left and right instances of Nil . By

definition, leaf nodes are such that l=k=u. So, for example, Node〈2,2,2〉 may be the type of

the left subtree (a leaf) in Figure 2.5.

2.3.1 BST Insertion

We now define the insert method in the BST class, which takes as argument an integer

value and provides a useful demonstration of a case discrimination construct that looks at

the type structure of the root field:

〈 v : integer 〉
[BST〈 l , u 〉 〈min (l , v) ,max(u , v) 〉]
i n s e r t (value : I n tege r 〈 v 〉) =

case r oo t {
N i l ⇒ r oo t := new Node(value)
Node ⇒ r oo t . add (value)

}

The Node class implements the main insertion algorithm. Its method add takes an

argument similar to the one above, and also uses a case discrimination construct to look

at the type structure of the two subtree fields:

〈 v : integer 〉
[Node〈 l , k , u 〉 〈min (l , v) , k ,max(u , v) 〉]

20 CHAPTER 2. DOL BY EXAMPLE

add (value : I n tege r 〈 v 〉) =
i f value < key {

case l e f t {
N i l ⇒ l e f t := new Node(value)
Node ⇒ l e f t . add (value)

}
} else i f value > key {

case r i g h t {
N i l ⇒ r i g h t := new Node(value)
Node ⇒ r i g h t . add (value)

}
} else { / / value == key

skip
}

We add an element to the tree by comparing the value to the key stored at each node,

and recursively descending into the appropriate subtree until a leaf is reached that allows

adding the new node.

The precise types given to the BST and Node classes allow the typechecker to detect

a number of common programming errors. For example, the compiler will report a type

error if we try to call the add method as follows:

〈 v : integer 〉
[BST〈 l , u 〉 〈min (l , v) ,max(u , v) 〉]
i n s e r t (value : I n tege r 〈 v 〉) =

root.add(value)

Because root declares a union type, we cannot call a method directly on it; first, we must

use a case construct to analyse the type of the field and discover whether the object is an

instance of Nil or Node, noting that, at each branch, the typechecker requires that root be

bound to only one of the types which are subtypes of the union of types. This guarantees

that either branch is taken and its execution succeeds.

Similarly, the compiler will object to the wrong conditional test below:

〈 v : integer 〉
[Node〈 l , k , u 〉 〈min (l , v) , k ,max(u , v) 〉]
add (value : I n tege r 〈 v 〉) =

i f value > key {
case l e f t {

N i l ⇒ l e f t := new Node(value)
. . .

Here, the compiler will report inconsistent constraints. The case construct is correctly

used to find out that left is a Nil . Then, the assignment changes the type of the left field

to Node〈v,v,v〉 (which is the type given to it by init). However, the compiler assumes v> k

2.3. BINARY SEARCH TREE 21

from the conditional test, after which will not be able to assert v≤ k issued from the new

type of the left field. Recall the constraints on the declared type of left , requiring its

value be left-bounded by the minimum key l (which has become v) and right-bounded by

value k (known to be also v) such that l ≤ k. Again, DOL relies on the external constraint

solver to statically verify that the specified constraints hold.

2.3.2 BST Deletion

Deletion from the binary search tree may involve removing a key not only from the tree’s

leaf nodes but also from an interior node, which requires some sort of rearrangement of

the tree structure. Moreover, unlike insertion, in which min and max could be used to

issue the new value’s standing vis-à-vis the minimum and maximum keys existing in the

tree, deletion delivers the same binary search tree where the new minimum or maximum

may be hidden in the subtrees.

However, we can still establish that the implementation is type correct, ensuring that

the tree after deletion is within the bounds, no matter where the key removal occurs (from

a fringe or the middle of the tree). The remove method in the BST class requires the value v

about to be removed, if it exists, to be within the tree bounds (l ≤ v≤u). The method is

implemented as usual:

〈 v : integer 〉
remove (value : I n tege r 〈 v 〉) =

case r oo t {
N i l ⇒ skip
Node ⇒

i f r oo t . i sLea f (value) {
r oo t := new N i l ()

} else {
r oo t . de le teCh i l d (value)

}
}

We check if root is a Nil , in which case we are done as the tree is empty. Otherwise, root

is a Node, and we determine if it is a leaf holding the value to be removed. Deletion is

accomplished either by setting root to a fresh Nil object, or by calling the recursive method

deleteChild on it in order to run the algorithm. As we will see, the deleteChild method may

change locally the type of the root field. However, the ordering constraint is hidden in

the field type, which means that the type of the receiver as viewed from outside does not

change, so we simply omit it in the remove method signature.

The task of deleting a child can basically be divided in three stages: finding the key to

remove, looking for a minimum key (guaranteed via types to be within bounds) to replace

22 CHAPTER 2. DOL BY EXAMPLE

the one being deleted, and applying deleteChild to remove the node whose key we took.

We encode this as follows:

〈 v : integer 〉
[Node〈 l , k , u 〉 〈 l , k1 , u 〉 where k1 : integer { l ≤ k1 ≤ u }]
de le teCh i l d (value : I n tege r 〈 v 〉) =

i f value < key {
case l e f t {

N i l ⇒ skip
Node ⇒

i f l e f t . i sLea f (value) {
l e f t := new N i l ()

} else {
l e f t . de le teCh i l d (value)

}
}

} else i f value > key {
case r i g h t {

N i l ⇒ skip
Node ⇒

i f r i g h t . i sLea f (value) {
r i g h t := new N i l ()

} else {
r i g h t . de le teCh i l d (value)

}
}

} else { / / value == key
var newKey := value ;
case r i g h t {

N i l ⇒
case l e f t {

N i l ⇒ skip
Node ⇒ newKey := l e f t . getMaxKey ()

}
Node ⇒ newKey := r i g h t . getMinKey ()

} ;
de le teCh i l d (newKey) ;
key := newKey

}

In a manner similar to add, we recursively search for the key to remove. The easy case,

when the child node to be removed is a leaf, is handled by setting the child node to Nil .

Otherwise, when the node that holds the value is found in the middle of the tree, we hoist

a minimum key using methods getMinKey and getMaxKey defined at the end of the chapter,

which work inside the subtrees of the node whose key is being deleted. Then, we remove

2.3. BINARY SEARCH TREE 23

the node whose key we found by calling deleteChild, and replace the value being deleted

with the found key. Notice that the type assigned at each recursive call represents ordering

evidence around the deleted element. As with insertion, indexing with bounds allows the

typechecker to ensure the binary search tree invariant.

24 CHAPTER 2. DOL BY EXAMPLE

2.4 DOL Code Example: Binary Search Tree

1 class BST〈 l , u : integer 〉 {
2 r oo t : N i l + Node〈 l , k , u 〉 where k : integer { l ≤ k ≤ u} / / the only f i e l d
3
4 i n i t () : BST〈 2 ,1 〉 =
5 r oo t := new N i l ()
6
7 〈 v : integer 〉
8 [BST〈 l , u 〉 〈min (l , v) ,max(u , v) 〉]
9 i n s e r t (value : I n tege r 〈 v 〉) =

10 case r oo t {
11 N i l ⇒ r oo t := new Node(value)
12 Node ⇒ r oo t . add (value)
13 }
14
15 〈 v : integer 〉
16 remove (value : I n tege r 〈 v 〉) =
17 case r oo t {
18 N i l ⇒ skip
19 Node ⇒
20 i f r oo t . i sLea f (value) {
21 r oo t := new N i l ()
22 } else {
23 r oo t . de le teCh i l d (value)
24 }
25 }
26
27 〈 v : integer 〉
28 search (value : I n tege r 〈 v 〉) : Boolean 〈b 〉 where b : boolean =
29 case r oo t {
30 N i l ⇒ fa lse
31 Node ⇒ r oo t . con ta ins (value)
32 }
33 }
34 class N i l {
35 i n i t () : N i l = skip
36 }
37 class Node〈 l , k , u : integer { l ≤ k ≤ u} 〉 {
38 key : I n tege r 〈 k 〉 / / f i e l d s
39 l e f t : N i l + Node〈 l , k1 , u1 〉 where k1 , u1 : integer { l ≤ k1 ≤ u1 ≤ k}
40 r i g h t : N i l + Node〈 l1 , k1 , u 〉 where l1 , k1 : integer {k ≤ l 1 ≤ k1 ≤ u}

2.4. DOL CODE EXAMPLE: BINARY SEARCH TREE 25

41
42 〈 v : integer 〉
43 i n i t (value : I n tege r 〈 v 〉) : Node〈v , v , v 〉 =
44 key := value ;
45 l e f t , r i g h t := new N i l () , new N i l ()
46
47 〈 v : integer 〉
48 [Node〈 l , k , u 〉 〈min (l , v) , k ,max(u , v) 〉]
49 add (value : I n tege r 〈 v 〉) =
50 i f value < key {
51 case l e f t {
52 N i l ⇒ l e f t := new Node(value)
53 Node ⇒ l e f t . add (value)
54 }
55 } else i f value > key {
56 case r i g h t {
57 N i l ⇒ r i g h t := new Node(value)
58 Node ⇒ r i g h t . add (value)
59 }
60 } else { / / value == key
61 skip
62 }
63
64 〈 v : integer 〉
65 [Node〈 l , k , u 〉 〈 l , k1 , u 〉 where k1 : integer { l ≤ k1 ≤ u }]
66 de le teCh i l d (value : I n tege r 〈 v 〉) =
67 i f value < key {
68 case l e f t {
69 N i l ⇒ skip
70 Node ⇒
71 i f l e f t . i sLea f (value) {
72 l e f t := new N i l ()
73 } else {
74 l e f t . de le teCh i l d (value)
75 }
76 }
77 } else i f value > key {
78 case r i g h t {
79 N i l ⇒ skip
80 Node ⇒
81 i f r i g h t . i sLea f (value) {
82 r i g h t := new N i l ()
83 } else {
84 r i g h t . de le teCh i l d (value)
85 }
86 }
87 } else { / / value == key
88 var newKey := value ;
89 case r i g h t {
90 N i l ⇒
91 case l e f t {
92 N i l ⇒ skip
93 Node ⇒ newKey := l e f t . getMaxKey ()
94 }
95 Node ⇒ newKey := r i g h t . getMinKey ()
96 } ;
97 de le teCh i l d (newKey) ;
98 key := newKey
99 }

26 CHAPTER 2. DOL BY EXAMPLE

100
101 〈 v : integer 〉
102 conta ins (value : I n tege r 〈 v 〉) : Boolean 〈b 〉 where b : boolean =
103 i f value < key {
104 case l e f t {
105 N i l ⇒ fa lse
106 Node ⇒ l e f t . conta ins (value)
107 }
108 } else i f value > key {
109 case r i g h t {
110 N i l ⇒ fa lse
111 Node ⇒ r i g h t . conta ins (value)
112 }
113 } else { / / value == key
114 true
115 }
116
117 〈 v : integer 〉
118 i sLea f (value : I n tege r 〈 v 〉) : Boolean 〈b 〉 where b : boolean =
119 i f value == key {
120 case l e f t {
121 N i l ⇒
122 case r i g h t {
123 N i l ⇒ true
124 Node ⇒ fa lse
125 }
126 Node ⇒ fa lse
127 }
128 } else {
129 fa lse
130 }
131
132 getMinKey () : I n tege r 〈 l 1 〉 where l 1 : integer { l ≤ l 1 ≤ k} =
133 case l e f t {
134 N i l ⇒ key
135 Node ⇒ l e f t . getMinKey ()
136 }
137
138 getMaxKey () : I n tege r 〈u1 〉 where u1 : integer {k ≤ u1 ≤ u} =
139 case r i g h t {
140 N i l ⇒ key
141 Node ⇒ r i g h t . getMaxKey ()
142 }
143 }

Chapter 3

The DOL Language

In this chapter, we formalise the core language, a desugared version of the language used

in the previous chapter, that comprises all the properties informally described in the ex-

amples. We build on the core sequential language from Gay et al. [2015] with session

types removed, which offers a versatile basis for class-based object-oriented languages

with mutable state, providing some of the techniques that allow us to simplify proofs

while keeping them manageable. The proofs are provided in the subsequent chapter.

We adapt and extend Gay et al. [2015]’s language in three ways. (1) We replace ses-

sion types with dependent types and study the consequences of this idea. (2) We incorpo-

rate inheritance and nominal subtyping, a feature absent from the base language. (3) We

combine linear and unrestricted objects in the formalisation, building a less restrictive

type system than the original one.

While many theoretical works exist in the domain of dependent types, no formalism

that we know of has successfully combined dependent types and objects in a class-based

language with mutable state.

Chapter Outline. This chapter is divided into the following sections:

• Section 3.1 defines the formal syntax of DOL.

• Section 3.2 presents the static type system, which is described in several stages:

typing index refinements, kinding, subtyping, typing terms and typing programs.

• Section 3.3 defines an operational semantics on states.

27

28 CHAPTER 3. THE DOL LANGUAGE

P ::= L̄ (programs)
L ::= class C : ∆ extends T{l̄ : T̄} is {M̄} (classes)
M ::= m(x) = t (methods)
T ::= Cī | Πa : I.T | Σa : I.T | T + T (types)

| T × T | T T | T → T

t ::= x | f | new C() | f := t | t; t | m(t) (terms)
| f.m(t) | case f of (Ck ⇒ tk)k∈1,2

| if t then t else t | while t do t

∆ ::= ε | ∆, a : I (index contexts)
I ::= integer | boolean | {a : I | p} (index types)
i ::= a | n | i⊕ i | p (index terms)
p ::= false | true | ¬p | i4 i | p7 p (propositions)
⊕ ::= + | − (arithmetic operators)
4 ::= < | ≤ | .

= | ≥ | > (relational operators)
7 ::= ∧ | ∨ (logical operators)

Figure 3.1: Top-level syntax

3.1 Syntax

The formal language omits some features of the practical syntax used in the examples,

even though our prototype includes them. We summarize the main differences, some of

which have already been discussed in Chapter 2.

• Primitive values as used in the examples are translated into object references, which

are the only values in our language, and all computations are performed by calling

methods. This lightens the type system and the proofs without affecting expressiv-

ity, even if the resulting formal language reveals a somewhat cumbersome style of

programming.

• All methods have exactly one parameter. A method written m() = t abbreviates

m(top) = t where top of type Top is used as a dummy parameter. The special init

constructor method, which initialises all fields to new objects, is assumed to always

have a parameter of type Top, even if we do not include it in the syntax. Defining

methods that take an arbitrary number of parameters does not introduce any major

technical challenge.

• Local variables are omitted, since they can be simulated by introducing extra pa-

3.1. SYNTAX 29

rameters or fields.

We define the top-level syntax in Figure 3.1. Identifiers are drawn from the following

disjoint countable sets: that of class names (denoted by B,C,D), that of fields (denoted

by f, g), that of methods (denoted by m), that of object variables (denoted by x, y, o), and

that of index variables (denoted by a, b). Labels l identify class members, that can either

be fields or methods. The metavariables T, U, V,W range over object types; I, J range

over index types; and i, j range over index terms.

Notation 3.1 (Sequences). The overbar notation, written Ā, denotes a possibly empty

sequence of A items (e.g. A1, . . . , An). The symbol ε represents the empty sequence. We

sometimes use a subscript k to indicate a position in the sequence. Moreover, if the same

subscript is used in different sequences, then these sequences are assumed to be of the

same length.

Programs P consist of collections of class declarations L. A class family, written

class C : ∆ extends T{l̄ : T̄} is {M̄}, associates a class named C to an index context ∆, a

supertype T , a sequence of member declarations l̄ : T̄ (field and method signatures), and a

sequence of method implementations M̄ . An index context maps index variables to index

types, fixing the class family arity, with each entry having the form a : I . A concrete

or proper type, written Cī, is obtained by instantiating a class family with indices in

application position. Index variables in ∆ can be used to constrain types inside the class,

including that of the explicit superclass T , where T is of the form Dī. (As we will see

later, this restriction is enforced by the typing rules.) Finally, a method is implemented

separately from its signature as m(x) = t, where t is the method body and x its single

parameter.

The predefined Top denotes a concrete class (having an empty ∆). We assume its

declaration to be

class Top : {}{}

It does not declare neither a supertype nor members (fields or methods). We also assume

the two predefined class families Integer and Boolean declared as

class Integer : (i : integer) extends Top{plus : . . .} is {. . .}
class Boolean : (b : boolean) extends Top{and : . . .} is {. . .}

which do not contain fields but provide several useful type invariant methods for arith-

metic and logic operations as described in the examples (Section 2.2.2). None of these

classes define a constructor, which means that they cannot be instantiated by new.

30 CHAPTER 3. THE DOL LANGUAGE

Definition 3.2 (Free Index Variables). The set of index variables appearing free in an

item A, written FV(A), is inductively defined on the structure of A, which can take the

form of a type T , an index type I , an index term i and a proposition p. For example,

FV(Ci1 . . . Cin) , FV(i1) ∪ . . . ∪ FV(in), while FV(Πa : I.T) , FV(I) \ {a} ∪ FV(T),

and similarly FV({a : I | p}) , FV(I) \ {a} ∪ FV(p).

3.1.1 Types

Types T either classify objects or build method signatures. They can be of the following

seven forms:

• A type Cī extends with indices the Java notion of class types.

• A universal dependent type constructor, written Πa : I.T , where a may occur free

in T , is a type that maps elements of the index type I to elements in the type T . It

is used to build method signatures.

• An existential type constructor, written Σa : I.T , where a may occur free in T , also

maps elements of the index type I to elements in the type T , with the index vari-

able a representing some unknown value in T . It is used to represent undetermined

properties of a concrete object type.

• A union type T + T classifies the set of objects belonging either to the left or

the right type. It is used to define a supertype grouping independently developed

classes.

• A product type, written T × T , is used in method signatures, with the first type

classifying the current object this, implicitly passed to the method, and the second

one classifying the only explicit parameter.

• A parameter type of the form T T relates the two components that classify the

current object this, the input type and a possibly different output type.

• A method type, written T → T , maps the type of the parameters to a return type.

3.1.2 Terms

Terms t are fairly standard, except for some restricted forms that allow the type system to

record more precisely how the types of objects vary. The variable x denotes a parameter.

There is no qualified x.f . Instead, field access, written f , is only defined for a shared field

(a restriction enforced by the typing rules), or in combination with assignment, method

3.1. SYNTAX 31

calls and case constructs. This is part of the linear control of objects. All fields are

private in the sense that every f always refers to a field of the current object (cf. Gay et al.

[2015]). Object creation (new C()) does not take any parameters. Assignment (f := t) is

defined in terms of a non-standard swap operation in the style of Gay et al. [2015]. The

operation assigns the value of t to the field f and returns the old value of f as its result.

This prevents aliasing linear fields in terms such as f2 := (f1 := t). Here, instead of

evaluating to the value computed by t, that becomes the new content of f1, the innermost

assignment evaluates to the former content of f1 which is put into f2. The sequential term

composition (t; t) is standard. Method call is available both on the current object itself (a

self call), written m(t), and on a field of the current object this, written f.m(t), but not

on a parameter or an arbitrary term for that matter. This is because calling a method may

change the type of the object on which the method is called. Note that the type system

only records changes on the type of the current object this, the only one that can access

its fields. To simplify, the case construct may only depend on a field, taking the form of

case f of (Ck ⇒ tk)k∈1,2 where f plays the role of the binding occurrence in the branches.

Conditionals and while loops are standard.

3.1.3 Index Refinements

Index types I comprise the integer and boolean types, as well as the subset type of the

form {a : I | p}. Index terms i include some of the possible index constructs, namely

variables, integer literals, arithmetic operations, and also propositions, since a term of the

boolean index type can instantiate a class family (for example, in method signatures of the

predefined Boolean class). Propositions p take the form of the truth values, the negation

and linear inequalities. We omit functions max and min from the examples as they do not

introduce any additional technical challenge.

3.1.4 Additional Syntax Not Available to Programmers

Figure 3.2 defines syntactic extensions required for the formal system only. The internal

type C[F] (cf. [Gay et al., 2015]) is an alternative form of an object type that contains

the class name C and a record field typing F that provides types for all the fields of C,

including the inherited ones. For example, C[{f1 : T1, f2 : T2}] is the internal type of

an object of C having two fields of types T1 and T2, which may be defined either in C

or in any of its superclasses. The internal type, used to classify the current object (this)

in the context, cannot be the type of an arbitrary term, which never evaluates to this (as

enforced by the typing rules). Instead, the purpose of the internal type is to allow the

32 CHAPTER 3. THE DOL LANGUAGE

T ::= . . . | C[F] (types)
F ::= {f̄ : T̄} (field types)
r ::= o | r.f (paths)
t ::= . . . | return t (terms)
θ ::= ε | θ, i/a (index substitutions)

∆ ::= . . . | ∆, p (index contexts)
Γ ::= ε | Γ, x : T (object contexts)
K ::= ? | Πa : I.K (kinds)
h ::= ε | h, o = R (heaps)
R ::= C{f̄ = ō} (object records)
S ::= (h ∗ r, t) (states)
E ::= [] | f := E | E ; t | m(E) | f.m(E) (evaluation contexts)

| return E | if E then t else t | while E do t

Figure 3.2: Extended syntax, used only in the type system and operational semantics

current object (this) to access its own fields, for typechecking assignment, method calls

and case constructs, operations that may change its type through the field typing. Note

that a type of the form Cī, if used for the current object instead of a type C[F], might

somehow be enough to track fields whose types depend on indices introduced in the class

header and the methods’ Π, yet it would not allow us to track fields whose types depend

on existential variables bound to Σ whose scope is local to the type.

Terms evaluate to object references o, the only values in our language. To simplify,

we do not define a separate syntactic category for object references. Instead, object ref-

erences o are a subset of the variable names. Paths r in the style of Gay et al. [2015]

represent locations in the heap, formed by the top-level object followed by a sequence of

an arbitrary number of fields. For example, if r indicates the path of the currently active

object, when a method call on a field f relative to r is entered, r.f becomes the path that

indicates the new current object that becomes active. The return term represents an on-

going method call during which the path changes as described above (Gay et al. [2015]).

Paths and the return term are constructs belonging to the operational semantics.

Substitutions θ map index variables to index terms. Index contexts ∆ are extended to

accept propositions p. Object contexts Γ map object variables to types.

Types are classified into kinds K, much the same way as terms are classified into

types. Kind ? characterizes proper types, while kind Πa : I.K classifies families of

classes, i.e. types that have to be applied to index terms to form proper types. As we

will see in the typing rules, we only ever need to check for proper types (with kind ?). In

3.1. SYNTAX 33

fact, the only way to construct a type of a kind other than ? is by declaring an indexed

class. So, in the bank account example, the class family Account has kind Πb : natural.?,

and an instantiation, say Account 0, of kind ?, denotes the proper type of an object refer-

ence.

We sometimes write Π∆.T as an abbreviation for Πa1 : I1.. . .Πan : In.T , and simi-

larly for a type Σ and a kind Π. When ∆ is empty, we abbreviate Π∆.T to T , Σ∆.U to U

and Π∆.? to ?.

Definition 3.3 (Domain).

1. The domain of an index context ∆, notation dom(∆), can be inductively defined as

follows:

dom(ε) = {}
dom(∆, a : I) = dom(∆) ∪ {a}
dom(∆, p) = dom(∆)

2. Let θ = {i1/a1, . . . , in/an}. Then dom(θ) = {a1, . . . , an}.

3. Let Γ = {x1 : T1, . . . , xn : Tn}. Then dom(Γ) = {x1, . . . , xn}.

4. Let h = {o1 = R1, . . . , on = Rn}. Then dom(h) = {o1, . . . , on}.

A heap h is a mapping from object references o to object records R. We assume three

special objects (top : Top, false : Boolean false, true : Boolean true) that are initially

placed in the heap. The heap produced by the operation h, (o = R) contains a new map-

ping from object reference o to record R. The operation of adding this binding to the

heap h is only defined if o 6∈ dom(h). Note that the order in h is irrelevant. Records R

are instances of classes, represented by C{f̄ = ō}, comprising the class of the object

followed by a mutable record mapping field names to object references.

The operational semantics is defined as a reduction relation on states S of the form

(h ∗ r, t), consisting of a heap h, a path r that represents the current object, and a term t.

Evaluation contexts E are defined in the style of Wright and Felleisen [1994]. Intuitively,

an evaluation context is a term with a hole [] at the point where the next reduction step

must take place in a call-by-value evaluation order; E [t] is the term obtained by replacing

the hole in E by term t.

34 CHAPTER 3. THE DOL LANGUAGE

∆ ` I Under context ∆, index type I is well-formed

` ∆ (WF-INTEGER)
∆ ` integer

` ∆ (WF-BOOLEAN)
∆ ` boolean

∆ ` I ∆, a : I ` p
(WF-SUBSET)

∆ ` {a : I | p}

∆ ` p Under context ∆, proposition p is well-formed

` ∆ (WF-TRUE)
∆ ` true

` ∆ (WF-FALSE)
∆ ` false

∆ ` p
(WF-NEG)

∆ ` ¬p

∆ ` i : integer ∆ ` j : integer
(WF-4)

∆ ` i4 j

∆ ` p1 ∆ ` p2 (WF-7)
∆ ` p1 7 p2

` ∆ Context ∆ is well-formed

(WF-EMPTY∆)` ε
` ∆ ∆ ` p

(WF-PROP∆)` ∆, p

` ∆ a 6∈ dom(∆) ∆ ` I
(WF-VAR∆)` ∆, a : I

Figure 3.3: Formation rules for index types, propositions and contexts

3.2 Static Semantics

We typecheck our language with respect to one index context ∆, and one object context Γ.

The ordering is important in the index context, because of (index) variable-to-type depen-

dencies, and irrelevant in the object context. For example, an index context (∆1, a : I,∆2)

is said to be well-formed if a 6∈ dom(∆1) ∪ dom(∆2) and a 6∈ FV(∆1); an index context

such as (c : {b : integer | b ≥ a}, a : I) is ill-formed. These requirements are made

explicit in the rules for the formation of index contexts, index types, and propositions that

appear in subsequent subsections.

3.2.1 Index Typing

Our formulation of index refinements closely follows that of Xi [1998], Xi and Pfenning

[1998, 1999], requiring a way to somehow decide the semantically defined relation

∆ |= p

which has the following reading: “proposition p follows from the assumptions ∆”. The

relation is decidable provided index terms are drawn from some decidable theory (e.g. that

of linear inequalities). Then, all proof obligations generated during typechecking fall

within a decidable theory, and so typechecking can be proved to be decidable. In the

3.2. STATIC SEMANTICS 35

∆ ` I <: J Under context ∆, index type I is a subtype of J

` ∆ (S-INTEGER)
∆ ` integer <: integer

` ∆ (S-BOOLEAN)
∆ ` boolean <: boolean

∆ ` I <: J ∆ ` {a : I | p}
(S-SUBSETL)

∆ ` {a : I | p} <: J

∆ ` I <: J ∆, a : I |= p
(S-SUBSETR)

∆ ` I <: {a : J | p}

Figure 3.4: Index subtyping rules

∆ ` i : I Under context ∆, index term i has type I

` ∆ a : I ∈ ∆ (I-VAR)
∆ ` a : I

` ∆ (I-INTEGER)
∆ ` n : integer

` ∆ (I-TRUE)
∆ ` false : boolean

` ∆ (I-FALSE)
∆ ` true : boolean

∆ ` i : integer ∆ ` j : integer
(I-⊕)

∆ ` i⊕ j : integer

∆ ` i : I ∆, a : I ` p ∆ |= p[i/a]
(I-INTRO)

∆ ` i : {a : I | p}

∆ ` i : J ∆ ` J <: I (I-SUB)
∆ ` i : I

Figure 3.5: Typing rules for index terms

case of an extended index language that would include multiplication or quantifiers, the

relation might become undecidable. In the implementation of DOL, the proof obligations

are passed to an auxiliary theorem prover, which is a powerful technique used also in

systems such as Stardust [Dunfield, 2007] and Liquid Types [Rondon et al., 2008].

Figure 3.3 uses three typing judgements to check the formation of index types, propo-

sitions and contexts:

∆ ` I and ∆ ` p and ` ∆

Rule WF-SUBSET checks if the base type of the index variable a is well-formed and if

the proposition is well-formed in the augmented (well-formed) context of index variables.

The remaining rules are straightforward.

Figure 3.4 introduces subtyping on index types defined by the judgement

∆ ` I <: J

which tell us that index type I is a subtype of index type J under the assumptions in

context ∆. The rules for subset types draw inspiration from Gordon and Fournet [2010].

36 CHAPTER 3. THE DOL LANGUAGE

∆1 ` ∆2 : θ Under context ∆1, context ∆2 derives substitution θ

` ∆ (θ-EMPTY)
∆ ` ε : ε

∆1 ` ∆2 : θ ∆1 ` i : I a 6∈ dom(∆1 ∪ θ) (θ-VAR)
∆1 ` (∆2, a : I) : θ, i/a

∆1 ` ∆2 : θ ∆1 |= p[θ]
(θ-PROP)

∆1 ` (∆2, p) : θ

Figure 3.6: Typing rules for substitution formation

Rule S-SUBSETL states that an index subset type is more specific than its base index type.

On the other hand, rule S-SUBSETR states that an index subset type may form a supertype

provided propostion p holds under the assumptions of the augmented index context.

Index typing defined by the judgement

∆ ` i : I

checks that i has type I under the assumptions in ∆. The rules in Figure 3.5 closely

follow Xi [1998]. The most important ones are rule I-VAR that ensures that an index

variable is declared in the index context, and rule I-INTRO that introduces a subset type

only when its proposition p logically follows from the assumptions in the index context.

Since the goal of this thesis is the study of a language of mutable objects in the presence

of dependent types, rather than a language of index refinements, we refer the interested

reader to related work for a more detailed description of index typing.

3.2.2 Index Substitution

The binding occurrences of index variables appear in subset types, and also in types and

kinds in the object language. We say that a occurs bound in p within {a : I | p}, in T

within Πa : I.T and Σa : I.T , and in K within Πa : I.K.

To simplify the proofs, in particular to avoid having to rename bound variables in sub-

stitution, we follow Barendregt [1984]’s variable convention whereby the names of bound

variables must all be distinct from each other and from any other variables occurring free

in terms and types. Note that Barendregt’s variable convention is employed both to index

variables a and object variables x in order to obtain simple proofs.

We denote by i1[i2/a] the capture-avoiding substitution of i2 for the free occurrences

of a in i1. Index substitutions are defined inductively on the structure of index terms. For

example, (i1 + i2)[i3/a] is defined as i1[i3/a] + i2[i3/a]. A single index substitution is

extended pointwise to multiple index substitution θ, which maps index variables to index

terms, by defining iε , i and i1([i2/a], θ) , (i1[i2/a])[θ].

3.2. STATIC SEMANTICS 37

∆ ` K Under context ∆, kind K is well-formed

` ∆ (WF-?)
∆ ` ?

∆, a : I ` K
(WF-Π)

∆ ` Πa : I.K

∆ ` T : K Under context ∆, type T has kind K

class C : (ā : Ī) extends { } is { } ∆ ` Πā : Ī .?
(K-CLASS)

∆ ` C : Πā : Ī .?

∆ ` ? (K-TOP)
∆ ` Top : ?

∆ ` Cī : Πa : I.K ∆ ` i : I (K-APP)
∆ ` Cīi : K[i/a]

∆, a : I ` T : ?
(K-Π)

∆ ` Πa : I.T : ?

∆, a : I ` T : ?
(K-Σ)

∆ ` Σa : I.T : ?
∆ ` T : ? ∆ ` U : ? (K-+)

∆ ` T + U : ?

∆ ` T : ? ∆ ` U : ? (K-×)
∆ ` T × U : ?

∆ ` C : K ∆ ` T̄ : ? (K-RECORD)
∆ ` C[{f̄ : T̄}] : ?

Figure 3.7: Kind and type formation rules

The judgement for deriving a substitution θ from an index context ∆2 has the form

∆1 ` ∆2 : θ

where, under the assumptions in context ∆1, we think of ∆2 as the input and θ as the

output. The rules are defined in Figure 3.6 – here we are only interested in substitutions

of index terms for index variables that satisfy the assumptions of the constraint domain.

The rules require that ∆2 and θ have the same arity and that each substituent is well-

formed in the context. Specifically, rule θ-VAR ensures that for each substitution i/a,

there is an entry a : I such that ∆1 ` i : I . Rule θ-PROP checks that the substitution

applied to a proposition p is satisfiable.

As for index terms, application of a capture-avoiding substitution θ to a type T , de-

noted by T [θ], is standard, defined inductively on the structure of T .

3.2.3 Kinding

Types may be syntactically valid, yet defining the wrong arity or containing ill-typed

(index) terms. The rules for kind and type formation are defined in Figure 3.7. Kind

formation uses a judgement

∆ ` K

with rule WF-? checking ∆ formation. Rule WF-Π checks the kind of class families,

mapping an index term of type I to a type of kind K. The second judgement

38 CHAPTER 3. THE DOL LANGUAGE

∆ ` T : K

verifies that T has kind K under the assumptions in ∆. We do not define rules for types

 and → , which are auxiliary forms to build method signatures. (As we will see, the

rules for program formation in Figure 3.13 control how each type component is checked.)

Rule K-CLASS assigns a class name C the kind given to it by its class declaration.

By definition of rule K-TOP, the native type has a proper kind ?. An instance of a family

of classes can be instantiated in rule K-APP provided its indices have the expected index

type. Rules K-Π and K-Σ add bindings to the index context and check that, under the

added assumptions, the type T is well-formed. The rules K-+, K-× and K-RECORD

simply check each type component.

Example. The system uses the kinding rules to check the supertype declared by a class.

Consider the PlusAccount class from the examples. Assume a context

∆ , s : natural, c : natural, b : natural

where natural abbreviates an index subset type of the form {a : integer | a ≥ 0}. Also,

suppose that ` ∆. We omit these derivations in the example below. We can show that

the type Account b is well-kinded as follows:

. . .

...
` ∆ a 6∈ dom(∆)

... (WF-SUBSET)
∆ ` natural

(WF-VAR∆)` ∆, a : natural
(WF-?)

∆, a : natural ` ?
(WF-Π)

∆ ` Πa : natural.? (K-CLASS)
∆ ` Account : Πa : natural.? I-VAR (K-APP)

∆ ` Account b : ?

3.2.4 Subtyping

Term typing and method overriding rely on the subtyping relation defined as the reflexive

and transitive closure of the inheritance relation as in Java, guided by the “safe substi-

tutability principle” [Liskov and Wing, 1994]. The judgement

∆ ` T <: U

asserts that T is a subtype of U under the assumptions in context ∆. As we will see

later, the typing relation includes an explicit rule for subsumption T-SUB, which may

3.2. STATIC SEMANTICS 39

∆ ` T <: U Under context ∆, type T is a subtype of U

class C : (ā : Ī) extends T{ } is { } ∆ ` ī : Ī ∆ ` T [̄i/ā] : ?
(S-SUPER)

∆ ` Cī <: T [̄i/ā]

∆ |= ī
.
= j̄ ∆ ` Cj̄ : ?

(S-APP)
∆ ` Cī <: Cj̄

∆ ` T [i/a] <: U ∆ ` i : I
(S-ΠL)

∆ ` Πa : I.T <: U

∆, a : I ` T <: U
(S-ΠR)

∆ ` T <: Πa : I.U

∆, a : I ` T <: U
(S-ΣL)

∆ ` Σa : I.T <: U

∆ ` T <: U [i/a] ∆ ` i : I
(S-ΣR)

∆ ` T <: Σa : I.U

∆ ` T1 <: U ∆ ` T2 <: U (S-+L)
∆ ` (T1 + T2) <: U

∆ ` T <: Uk (S-+Rk)
∆ ` T <: (U1 + U2)

∆ ` T1 <: U1 ∆ ` T2 <: U2 (S-×)
∆ ` (T1 × T2) <: (U1 × U2)

∆ ` T̄ <: Ū (S-RECORD)
∆ ` C[{f̄ : T̄}] <: C[{f̄ : Ū}]

∆ ` T1 <: T2 ∆ ` T2 <: T3 (S-TRANS)
∆ ` T1 <: T3

Figure 3.8: Subtyping rules

be invoked at any time within a typing derivation. For this reason, this is a declarative

specification of the subtyping relation (for the the algorithmic system, see Chapter 5).

The rules for subtyping are defined in Figure 3.8. The work by Aspinall and Com-

pagnoni [1996] was important to understand the subtyping relation in the presence of

dependent types. The subtyping rules for Π and Σ types have been adapted from Dunfield

and Pfenning [2003], Dunfield [2007].

All types in the top-level language are subject to subtyping, except for and → ,

since these types cannot arise from terms, and are not used to check method overriding

(cf. Figures 3.12 and 3.13). The internal field typing is also subject to subtyping in order

to check compatibility between fields of the same class. This relation is always derived

with respect to the internal type of the current object (this), the only one that has access

to its own fields (as enforced by the typing rules).

Rule S-SUPER is completely standard for object-oriented languages, adjusted to de-

pendent types. Because class Top does not declare a supertype, it follows that Top is a

supertype of every other type. By rule S-APP, subtyping is reflexive on class types, ex-

tended pointwise to all possible applications of the class type that satisfy the |= relation,

and by rule S-TRANS, subtyping is transitive. This makes it a pre-order.

In rules S-ΠL and S-ΠR, the left rule instantiates the index variable a to i in the

subtype, while the right rule relates two types T and U provided the variable a does not

40 CHAPTER 3. THE DOL LANGUAGE

appear free in T . The reasoning for rules S-ΣL and S-ΣR is similar, yet inverted. As

mentioned, we follow Barendregt [1984]’s variable convention, i.e. we implicitly assume

that the variable a in the extended context of both S-ΠR and S-ΣL is distinct from all the

variables already in ∆.

The two rules S-+L and S-+Rk together imply that a type T + U is a least upper

bound of T and U . Rule S-× expresses that the subtyping relation is a congruence. Rule

S-RECORD checks compatibility between field typings.

3.2.5 Auxiliary Functions and Predicates

As in Featherweight Java (FJ) [Igarashi et al., 2001], our typing rules rely on a few aux-

iliary functions and predicates. These are defined in Figure 3.9 and described below. We

write m 6∈ l̄ and m 6∈ M̄ to indicate that the method name m is not included respectively

in the sequence of member names l̄ and method definitions M̄ . We denote by T [Cī/D]

the substitution of Cī for the free occurrences of D bound to a type in T by defining

Bj̄[Cī/D] =

Bj̄ if B 6= D

Cīj̄ otherwise

(Σa : I.T)[Cī/D] = Σa : I.T [Cī/D]

(T + U)[Cī/D] = T [Cī/D] + U [Cī/D]

(T U)[Cī/D] = T [Cī/D] U [Cī/D]

(Π∆.T × U → W)[Cī/D] = Π∆.T [Cī/D]× U → W

Definition 3.4 (Union of Field Types). We denote by t the disjoint union of field types,

i.e. the operation of F1tF2 is defined by merging F1 and F2 if their domains are disjoint,

being undefined otherwise.

• Function classof(T) looks up the class of a type T of the form Cī and Σa : I.U ,

begin undefined for other forms.

• Function fields(T) expects T to be of the appropriate form – Top, Σa : I.U and Cī

–, and builds an internal type consisting of the class name and a record of the field

names with their types declared by the superclasses of T and by T itself. Notice

that a subclass may extend an instantiated superclass, which means that, because of

substitutions, the types of fields in the subclass may not be identical to those in the

superclass.

• Function mtype(m,Cī) looks up the signature of a method m for a receiver type

of the form Cī. The function uses two rules: MT-CLASS looks up the method

3.2. STATIC SEMANTICS 41

classof(T) = C

classof(Cī) = C classof(Σa : I.T) = classof(T)

fields(T) = U

fields(Top) = Top[{}] fields(Σa : I.T) = Σa : I.fields(T)

class C : (ā : Ī) extends Dj̄{f̄ : Ū , m̄ : } is { } fields(Dj̄ [̄i/ā]) = D[{ḡ : V̄ }]
fields(Cī) = C[{ḡ : V̄ } t {f̄ : Ū [̄i/ā]}]

mtype(m,Cī) = T

class C : (ā :) extends {. . . ,m : U, . . .} is { }
(MT-CLASS)

mtype(m,Cī) = U [̄i/ā]

class C : (ā :) extends Dj̄{l̄ : } is { } m 6∈ l̄
(MT-SUPER)

mtype(m,Cī̄i′) = mtype(m,Dj̄ [̄īi′/ā])[Cī/D]

mbody(m,C) = λx.t

class C : extends { } is {. . . ,m(x) = t, . . .}
(MB-CLASS)

mbody(m,C) = λx.t

class C : extends Dj̄{ } is {M̄} m 6∈ M̄
(MB-SUPER)

mbody(m,C) = mbody(m,D)

q(T) where q ::= un | lin

un(Top)
not un(T)

lin(T)

classof(T) = C class C : extends {f̄ : , m̄ : Π .(T̄ T̄ × →)} is { }
un(T)

Figure 3.9: Auxiliary functions and predicates

42 CHAPTER 3. THE DOL LANGUAGE

∆ ` Γ Under context ∆, context Γ is well-formed
` ∆ (WF-EMPTYΓ)

∆ ` ε
∆ ` Γ x 6∈ dom(Γ) ∆ ` T : K

(WF-Γ)
∆ ` Γ, x : T

Figure 3.10: Formation rules for object contexts

∆1; Γ ` r : T a ∆2 Under initial contexts ∆1; Γ, path r has type T , with final context ∆2

∆ ` Γ (T-REF)
∆; Γ, r : T ` r : T a ∆

∆; Γ ` r : C[F] a ∆
(T-FIELD)

∆; Γ ` r.f : F (f) a ∆

∆1; Γ ` r : Σa : I.T a ∆2 (T-UNPACK)
∆1; Γ1 ` r : T a ∆2, a : I

∆; Γ ` r : C[F] a ∆ ∆ ` C[F] <: fields(Cī)
(T-HIDE)

∆; Γ ` r : Cī a ∆

Figure 3.11: Typing rules for paths

signature in class C, while MT-SUPER looks for it by ascending the inheritance

hierarchy of classes. The above remark about substitutions in types is also valid for

the result of mtype(m,Cī).

• Function mbody(m,C), defined for a class name, is similar to mtype(m,Cī) yet

simpler: rules MB-CLASS and MB-SUPER look up the body of a method m in

class C or in one of its superclasses, returning a pair, written λx.t, composed of a

parameter x and a term t. The function is used only in the operational semantics

• Predicate q(T), where q is either un or lin, may use the class obtained by function

classof(T) to assign a qualifier to a type (rather than rely on user-defined annota-

tions): a type is said to be unrestricted (un) if denotes an instance of a type invariant

class, that is, a class whose methods do not change the state of the current object

(the input and output types coincide); it is linear (lin) if its class defines at least one

type varying method, which indicates that the state of the current object is modified.

3.2.6 Term Typing

For checking the formation of object contexts, we use a judgement of the form

∆ ` Γ

The judgement for typing paths, defined in Figure 3.11, is of the form

3.2. STATIC SEMANTICS 43

∆1; Γ1 ∗ r1 ` t : T a ∆2; Γ2 ∗ r2
Under initial contexts ∆1; Γ1 with path r1,
term t has type T , with final contexts ∆2; Γ2 and path r2

∆ ` Γ un(T)
(T-UNVAR)

∆; Γ, x : T ∗ r ` x : T a ∆; Γ, x : T ∗ r

∆ ` Γ lin(T)
(T-LINVAR)

∆; Γ, x : T ∗ r ` x : T a ∆; Γ ∗ r

∆; Γ ` r.f : T a ∆ un(T)
(T-UNFIELD)

∆; Γ ∗ r ` f : T a ∆; Γ ∗ r

∆ ` Γ (T-NEW)
∆; Γ ∗ r ` new C() : C.init a ∆; Γ ∗ r

∆1; Γ1 ∗ r1 ` t : T a ∆2; Γ2 ∗ r2

∆2; Γ2 ` r2 : C[F] a ∆2 ∆2; Γ2{r2.f ← [T} ` r2 : Cī a ∆2 (T-ASSIGN)
∆1; Γ1 ∗ r1 ` f := t : F (f) a ∆2; Γ2{r2.f ← [T} ∗ r2

∆1; Γ1 ∗ r1 ` t1 : U a ∆2; Γ2 ∗ r2

∆2; Γ2 ∗ r2 ` t2 : T a ∆3; Γ3 ∗ r2 un(U)
(T-SEQ)

∆1; Γ1 ∗ r ` t1; t2 : T a ∆3; Γ3 ∗ r2

∆1; Γ1 ∗ r1 ` t : U [θ] a ∆2; Γ2 ∗ r2 ∆2; Γ2 ` r2 : Cī a ∆2

mtype(m,Cī) = Π∆.(Cī T × U → W) ∆2 ` ∆ : θ

∆2; Γ2{r2 ←[T [θ]} ` r2 : Cj̄ a ∆3 (T-SELFCALL)
∆1; Γ1 ∗ r1 ` m(t) : W [θ] a ∆3; Γ2{r2 ←[fields(Cj̄)} ∗ r2

∆1; Γ1, r1 : C[F] ∗ r1 ` t : U [θ] a ∆2; Γ2 ∗ r2 ∆2; Γ2 ` r2.f : T1 a ∆3

mtype(m,T1) = Π∆.(T1 T2 × U → W) ∆3 ` ∆ : θ

∆3; Γ2{r2.f ←[T2[θ]} ` r2 : Cī a ∆3 (T-CALL)
∆1; Γ1, r1 : C[F] ∗ r1 ` f.m(t) : W [θ] a ∆3; Γ2{r2.f ←[T2[θ]} ∗ r2

∆1; Γ1 ` r.f : (U1 + U2) a ∆2 classof(Uk) = Ck

∆2; Γ1{r.f ←[Uk} ∗ r ` tk : T a ∆3; Γ2 ∗ r C1 6= C2 (T-CASE)
∆1; Γ1 ∗ r ` case f of (Ck ⇒ tk)k∈1,2 : T a ∆3; Γ2 ∗ r

∆1; Γ1 ∗ r1 ` t : Boolean p a ∆2; Γ2 ∗ r2

∆2, p; Γ2 ∗ r2 ` t1 : T a ∆3; Γ3 ∗ r2 ∆2,¬p; Γ2 ∗ r2 ` t2 : T a ∆3; Γ3 ∗ r2 (T-IF)
∆1; Γ1 ∗ r1 ` if t then t1 else t2 : T a ∆3; Γ3 ∗ r2

∆1; Γ1 ∗ r1 ` t1 : Boolean p a ∆2; Γ2 ∗ r2

∆2, p; Γ2 ∗ r2 ` t2 : Top a ∆2; Γ2 ∗ r2 (T-WHILE)
∆1; Γ1 ∗ r1 ` while t1 do t2 : Top a ∆2,¬p; Γ2 ∗ r2

∆1; Γ1 ∗ r1 ` t : U a ∆2; Γ2 ∗ r2 ∆2 ` U <: T
(T-SUB)

∆1; Γ1 ∗ r1 ` t : T a ∆2; Γ2 ∗ r2

Figure 3.12: Typing rules for terms in the top-level language

44 CHAPTER 3. THE DOL LANGUAGE

∆; Γ ` r : T a ∆

Rule T-REF obtains the type of the current object r without generating any new index

type information, so the final index context in the conclusion is the same as the initial one.

Rule T-FIELD returns the type of a field r.f . The existential elimination rule T-UNPACK

unpacks an existential type by extending the final index context from its premise in the

conclusion. Rule T-HIDE restores a type Cī, which is the type viewed from outside, from

the internal type C[F] of the current object r. Note that the internal type contains a field

typing F that describes the state of the object from the perspective of the class itself, but

not from the perspective of client code in other classes. In order to type a class, we need

to consider that the two types, the internal and the one viewed from outside, are correct

and consistent with respect to the subtyping relation C[F] <: fields(Cī) under an index

context ∆.

The two judgements above are used by the typing judgement for terms that take the

form

∆1; Γ1 ∗ r1 ` t : T a ∆2; Γ2 ∗ r2

The meaning of this judgement is that the evaluation of term t may both extend the con-

text ∆1 (for example, with existential variables that arise from the types of fields, or with

propositions) and change the types contained in Γ1 (for example, by assigning values to

objects, or by calling methods on them), giving rise to the final contexts ∆2; Γ2. Linearity

is yet another reason for a different final object context: if x is linear and is used in t,

then x is consumed and does not appear in Γ2. The judgement includes r1 and r2 in the

style of Gay et al. [2015], which are paths needed for typing runtime terms and tracing

objects in the heap. When typechecking a program, both r1 and r2 are always this, and

are used exclusively to access the fields of the current class. Hence, the judgement for

typing top-level terms will always have the form

∆1; Γ1, this : C[F1] ∗ this ` t : T a ∆2; Γ2, this : C[F2] ∗ this

where ∆1 may be extended by ∆2, and Γ2 may differ from Γ1 on the method parameter x

– if Γ1 is x : U and U is linear, then Γ2 must be ε since x has been consumed by t.

Before we describe the rules, we need some additional definitions.

Definition 3.5 (Member Access). We write C.lk to mean Tk for a class declaration of the

form class C : ∆ extends T{l1 : T1, . . . , ln : Tn} is {M̄} with 1 ≤ k ≤ n.

Definition 3.6 (Operations on Field Types and Object Contexts).

• If F = {f1 : T1, . . . , fn : Tn}, then F (fk) , Tk, and we define F{fj ←[U} ,
{f1 : T ′1, . . . , fn : T ′n} where T ′k = Tk and T ′j = U for k 6= j and n ≥ 1 and

1 ≤ k ≤ n and 1 ≤ j ≤ n.

3.2. STATIC SEMANTICS 45

• (Γ, x : T){x←[U} , Γ, x : U .

• Γ{r.f ←[T} , Γ{r ←[C[F{f ←[T}]} if ∆; Γ ` r : C[F] a ∆ for some ∆.

The typing rules for the top-level terms (Figure 3.1) are given in Figure 3.12.

• Rules T-UNVAR and T-LINVAR are used to access a parameter. The former is the

standard rule for reading a variable, while the latter implements destructive reads,

taking x from the final context in the conclusion.

• Rule T-UNFIELD is used for field access, being defined for unrestricted types only

(since the effect of reading f linear would remove it from the current object type).

• Rule T-NEW is the rule for object creation, giving the new object the type read

from the init method signature. The term does not depend on any information in the

object context, so the final context in the conclusion is the same as the initial one.

• Rule T-ASSIGN modifies a field of the current object, acting on its type C[F]. Un-

like the rule for assignment in Java, when a field is changed, we need to check all

the other fields in F to ensure that any dependencies are satisfied. We do this with

judgement ∆2; Γ2{r2.f ←[T} ` r2 : Cī a ∆2 derived by rule T-HIDE that recov-

ers a top-level type Cī using with the updated context as its initial context. Again,

unlike the standard rule for assignment, our rule returns as its result the type of the

old object contained in the field as part of the linear control of objects.

• Rule T-SEQ is the standard rule for the sequence operation, except that it checks

the first subterm and considers its possible effects in the typing context that checks

the second one.

• Rules T-SELFCALL and T-CALL are used for calling methods. Rule T-SELFCALL

checks the type of the parameter as usual, but uses rule T-HIDE to obtain a top-level

type for the current object r of the form Cī that allows method m to be called (its

signature yielding a substitution θ applied to the parameter and output types). The

final object context is updated in the conclusion with a type obtained by fields(Cj̄)

for r, where Cj̄ is derived by possibly unpacking the receiver output type T [θ] in

the premise ∆2; Γ2{r2 ←[T [θ]} ` r2 : Cj̄ a ∆3. Rule T-CALL checks a method

call on a field, combining the strategies used in rules T-SELFCALL and T-ASSIGN.

As T-SELFCALL, it expects the receiver (r2.f in this case) to have a type that allows

method m to be called (its signature yielding a substitution θ applied to the parame-

ter and output types). As T-ASSIGN, it retrieves the top-level type in order to check

that this mutation does not break dependencies elsewhere in F before updating the

final object context in the conclusion.

46 CHAPTER 3. THE DOL LANGUAGE

• Rule T-CASE makes the case distinction on a field f with a union type. Each branch

is then typed with a initial context where f is bound to either the left or the right

type. The rule requires that two branches have the same type and final contexts,

because f can only be bound to one type.

• Rule T-IF expects t in the condition to be of type Boolean p. Each branch is then

typed with initial contexts asserting or negating the proposition p. As in T-CASE,

both branches must return the same type and final contexts, since only one of the

branches will be executed.

• Rule T-WHILE is analogous to T-IF yet simpler, with the negation of the loop in-

variant being added to the index context in the conclusion.

• Rule T-SUB is the usual subsumption rule, adjusted to our requirements.

Example. Rules T-SELFCALL and T-CALL use a substitution θ to replace index vari-

ables with index terms in types. To show how this works, we typecheck a method call

from the examples in Chapter 2, namely

ε; Γ1 ∗ this ` acc.withdraw(v) : Top a ε; Γ2 ∗ this

assuming

Γ1 , v : Integer 70, this : C[{acc : A 100}]

Γ2 , v : Integer 70, this : C[{acc : A 30}]

That is, variable acc, an instance of A (which for space reasons abbreviates the class name

Account), is the only field of some class C. In the derivation of the method call above,

we obtain the following premises:

1. ε; Γ1 ∗ this ` v : Integer m[70/m] a ε; Γ1 ∗ this

2. ε; Γ1 ` this.acc : A 100 a ε

3. ε; Γ1{this.acc←[A (100−m)[70/m]} ` this : C 30 a ε

4. mtype(withdraw,A 100) =

Πm : {x : integer | x ≥ 0 ∧ x ≤ 100}.(A 100 A(100−m)× Integer m→ Top)

5. ε ` m : {x : integer | x ≥ 0 ∧ x ≤ 100} : (70/m)

3.2. STATIC SEMANTICS 47

After applying the substitution, these premises become:

1. ε; Γ1 ∗ this ` v : Integer 70 a ε; Γ1 ∗ this

2. ε; Γ1 ` this.acc : A 100 a ε

3. ε; Γ1{this.acc←[A 30} ` this : C 30 a ε

4. mtype(withdraw,A 100) =

Πm : {x : integer | x ≥ 0 ∧ x ≤ 100}.(A 100 A (100−m)× Integer m→ Top)

5. ε ` m : {x : integer | x ≥ 0 ∧ x ≤ 100} : (70/m)

Premise (1) is derived using T-UNVAR, while premise (2) obtains the field type from

rule T-FIELD. Premise (3) updates the field type in the context with the output type from

mtype, and obtains from rule T-HIDE the corresponding top-level type of the current

object this. Function mtype in (4) instantiates the method signature by performing a

substitution 100/b (omitted). Premise (5) is derived by rule θ-VAR that checks that the

substitution is satisfiable.

3.2.7 Program Typing

A well-formed program relies on well-typed fields, methods and classes, which we for-

mally define in Figure 3.13. The judgement of the form

`C M

states that a method in a class C is well-typed, while the judgement

∆ `T l : U

checks that a member type is well-formed under a supertype T . The judgements for

checking a class and a program take the following shape:

` L and ` P

• Rule T-METHOD constructs the judgement for checking the body of a regular

method by assuming two contexts: (1) an index context from the class declaration

extended with the index context from the method signature, and (2) an object con-

text containing the type of the parameter x from the method signature and the initial

internal type of the current object this obtained by fields(T1). Index variables that

appear in the types from the signature must be bound by the extended context (this

is ensured by T-CLASS, explained shortly). The rule uses the typing judgement for

48 CHAPTER 3. THE DOL LANGUAGE

`C M Method M is well-formed in class C

class C : ∆1 extends {. . . ,m : Π∆2.(T1 T2 × U → W), . . .} is { }
∆1,∆2;x : U, this : fields(T1) ∗ this ` t : W a ∆3; Γ, this : C[F] ∗ this

x : U ∈ Γ⇒ un(U) ∆3 ` C[F] <: fields(T2) m 6= init
(T-METHOD)`C m(x) = t

fields(C.init) = C[F] ε; ε ∗ r ` new C̄() : F (f̄) a ε; ε ∗ r no cycles in C
(T-INIT)

`C init() = f̄ := new C̄()

∆ `T l : U Member l has type U with supertype T

∆ ` U : ? (T-FTYPE)
∆ `T f : U

mtype(m,T) undefined
∆1 ` Π∆2.(Cī× U ×W) : ? ∆1,∆2 ` Cj̄ <: T2 (T-MTYPE)

∆1 `T m : Π∆2.(Cī T2 × U → W)

mtype(m,T) = Π∆′2.(T
′
1 T ′2 × U ′ → W ′)

∆1 ` Π∆2.(T1 × T2 × U ′ ×W) <: Π∆′2.(T
′
1 × T ′2 × U ×W ′)

(T-OVERRIDE)
∆1 `T m : Π∆2.(T1 T2 × U → W)

` L Class declaration L is well-formed

∆ ` T : ? ∆ `T l̄ : T̄ `C M̄ (T-CLASS)
` class C : ∆ extends T{l̄ : T̄} is {M̄}

` P Program P is well-formed

` L1 . . . ` Ln (T-PROGRAM)` L1 . . . Ln

Figure 3.13: Typing rules for program formation

terms. On typing completion, the type of the parameter is checked for linearity and

the final type of this is checked for consistency against the declared top-level out-

put type using subtyping. The other rule, T-INIT, initialises all fields, including the

inherited ones, under the condition that there are no cycles in the hierarchy induced

by subclassing.

• Rule T-FTYPE states that a field must be “typed” by kind ? of proper types – recall

that only class families have a kind Π∆.? with ∆ nonempty. When checking a

method type, we must establish for both the input and output types of the current

object this that the underlying class type is C and one of following holds: the

method is altogether new (T-MTYPE), or the method type is a correct override of a

3.2. STATIC SEMANTICS 49

∆1; Γ1 ∗ r1 ` t : T a ∆2; Γ2 ∗ r2
Under initial contexts ∆1; Γ1 with path r1,
term t has type T , with final contexts ∆2; Γ2 and path r2

∆1; Γ1 ∗ r1 ` t : T a ∆2; Γ2 ∗ r2.f

∆2; Γ2 ` r2.f : C[F] a ∆2 ∆2 ` C[F] <: fields(U)
(T-RETURN)

∆1; Γ1 ∗ r1 ` return t : T a ∆2; Γ2{r2.f ←[U} ∗ r2

∆1; Γ1 ∗ r ` t̄ : T̄ a ∆2; Γ2 ∗ r
Under initial contexts ∆1; Γ1 with path r, term sequence t̄
has type T̄ , with final contexts ∆2; Γ2 and the same path r

∆ ` Γ (T-EMPTY)
∆; Γ ∗ r ` ε : ε a ∆; Γ ∗ r

∆1; Γ1 ∗ r ` t : T a ∆2; Γ2 ∗ r ∆2; Γ2 ∗ r ` t̄ : T̄ a ∆3; Γ3 ∗ r (T-MULTI)
∆1; Γ1 ∗ r ` tt̄ : T T̄ a ∆3; Γ3 ∗ r

Figure 3.14: Typing rules for runtime terms

superclass method (T-OVERRIDE). Method overriding requires the initial and final

types of this in the current class to be subtypes of the corresponding types in the

superclass, and the parameter and return types to be in a valid subtype relation,

contravariant in the argument type and covariant in the return type.

• The two judgements above are used by rule T-CLASS that essentially makes the

following three checks: that the direct supertype has the kind ? of proper types, that

member types are well-formed, and that each method body is well-typed.

• Finally, by rule T-PROGRAM a program is well formed if each class defined in it is

well-typed.

3.2.8 Runtime Term Typing

To conclude the static semantics of DOL, we give in Figure 3.14 the typing rules for

the return term and for sequenced terms. While the path r is always this when typing

programs, it may vary when typing a term t as part of a runtime state, indicating the

current object active in that state (cf. Gay et al. [2015]). As we have seen, any difference

between r1 and r2 means that the runtime term contains a return, in which case r1 and r2

represent the object introduced by rule R-CALL and suppressed by rule R-RETURN. Note

in particular that in the first premise of T-RETURN, we have r1 = r2.f if the term t does

not contain a return; otherwise, the paths are different.

Sequenced terms are a convenient technical device that we use in the proofs in the

subsequent chapter. Rule T-MULTI is as expected: it checks the first term t and considers

50 CHAPTER 3. THE DOL LANGUAGE

(h1 ∗ r, new C̄()) −→ (h2 ∗ r, ō) State (h1 ∗ r, new C̄()) reduces to (h2 ∗ r, ō)

(h ∗ r, ε) −→ (h ∗ r, ε) (R-EMPTY)

(h1 ∗ r, new C()) −→ (h2 ∗ r, o) (h2 ∗ r, new C̄()) −→ (h3 ∗ r, ō) (R-MULTINEW)
(h1 ∗ r, (new C()new C̄())) −→ (h3 ∗ r, oō)

Figure 3.15: Reduction rules for sequenced object creation

the extensions in the index context and the possible effects in the object context that check

the remaining terms t̄.

3.3 Operational Semantics

Figure 3.15 gives the reduction rules for states of the form (h ∗ r, new C̄()), consisting of

a heap h, a path r and sequenced object creation new C̄(). These are used by the rules in

Figure 3.16, which define an operational semantics on states S the form (h ∗ r, t) where

the object path r is used to resolve field references appearing in the term t.

As usual, we denote by t[o/x] the substitution of o for the free occurrences of x in t

defined in the standard way. We also use the following definition:

Definition 3.7 (Operations on Heaps). Let h be the heap of the form h = (h0, o = R)

where R is the object record C{f1 = o1, . . . , fn = on}. Then, h(o) , R and h(o).class =

C, and, for all k such that 1 ≤ k ≤ n,

• R.fk , ok.

• R{fj ← [o} , C{f̄ = ō′} where o′k = ok and o′j = o for k 6= j and 1 ≤ j ≤ n.

• h{o.fk ←[o′} , (h0, o = R{fk ←[o′}).

• h(r) , ok if r = o.fk, and h{r.f ←[o′} , h{ok.f ←[o′}.

Rule R-NEW creates a fresh object and adds it to the heap, after having initialised all

fields. For this, it relies on the reduction of states for sequenced object creation. Rule

R-ASSIGN replaces the value of a field f of the current object located at r with a new

reference, and returns the former object pointed by f . Rule R-SEQ reduces to the second

part of the sequence of terms, discarding the first part only after it has become an object.

Rule R-SELFCALL is relative to a method call on the current object at r. The rule

prepares the method body t with a substitution (the actual parameter for the formal one)

before evaluating the term. R-CALL is the rule for a call on the object at f (relative to the

3.3. OPERATIONAL SEMANTICS 51

S1 −→ S2 State S1 reduces to S2

mbody(init, C) = f̄ := new C̄()

(h1 ∗ r, new C̄()) −→ (h2 ∗ r, ō) o 6∈ dom(h2)
(R-NEW)

(h1 ∗ r, new C()) −→ ((h2, o = C{f̄ = ō} ∗ r), o)

h(r).f = o1 (R-ASSIGN)
(h ∗ r, f := o2) −→ (h{r.f ←[o2} ∗ r, o1)

(h ∗ r, o; t) −→ (h ∗ r, t) (R-SEQ)

h(r).class = C mbody(m,C) = λx.t
(R-SELFCALL)

(h ∗ r,m(o)) −→ (h ∗ r, t[o/x])

h(r.f).class = C mbody(m,C) = λx.t
(R-CALL)

(h ∗ r, f.m(o)) −→ (h ∗ r.f , return t[o/x])

(h ∗ r.f , return o) −→ (h ∗ r, o) (R-RETURN)

h(r.f).class = Ck (R-CASEk)
(h ∗ r, case f of (Ck ⇒ tk)k∈1,2) −→ (h ∗ r, tk)

(h ∗ r, if true then t1 else t2) −→ (h ∗ r, t1) (R-IFTRUE)

(h ∗ r, if false then t1 else t2) −→ (h ∗ r, t2) (R-IFFALSE)

t2 = if t then (t1; while t do t1) else top
(R-WHILE)

(h ∗ r,while t do t1) −→ (h ∗ r, t2)

(h1 ∗ r1, t1) −→ (h2 ∗ r2, t2)
(R-CONTEXT)

(h1 ∗ r1, E [t1]) −→ (h2 ∗ r2, E [t2])

Figure 3.16: Reduction rules for states

current object at r), being defined in a slightly different way. The rule makes r.f become

the current object and wraps the method body t, prepared with the parameter substitution,

in a return term that replaces the method call. Then, the body is reduced to an object in

rule R-RETURN which also recovers the previous current object at r.

Rule R-CASEk means that either branch is taken, with the first having precedence over

the second, i.e. the second branch is only tried if the condition (h(r.f).class = C1) fails.

The two rules R-IFTRUE and R-IFFALSE use the special true and false objects for the

references that control the condition. In rule R-WHILE, the term is rewritten to a nested

conditional, using top for the body of the else branch. Rule R-CONTEXT is standard for

reduction in contexts, defining which term should be evaluated next.

52 CHAPTER 3. THE DOL LANGUAGE

o : BST[{f : Nil + Node}] ∗ o ` case f of Nil⇒ f := new Node() | Node⇒ f.m()
↓ (R-CASE1)

o : BST[{f : Nil}] ∗ o ` f := new Node() where h(o.f).class = Nil
↓ (R-EMPTY)

o : BST[{f : Nil}] ∗ o ` ε where mbody(init,Node) = λ().()
↓ (R-NEW)

o : BST[{f : Nil}] ∗ o ` f := o2 where h(o).f = o1 and o2 fresh
↓ (R-ASSIGN)

o : BST[{f : Node}] ∗ o ` o1

o : BST[{f : Nil + Node}] ∗ o ` case f of Nil⇒ f := new Node() | Node⇒ f.m()
↓ (R-CASE2)

o : BST[{f : Node}] ∗ o ` f.m() where h(o.f).class = Node
↓ (R-CALL)

o : BST[{f : Node[{f̄ : T̄}]}] ∗ o.f ` return t where mbody(m,Node) = λ().t

↓ where (∗ o.f , t) −→ (∗ o.f , o3)
o : BST[{f : Node[{f̄ : Ū}]}] ∗ o.f ` return o3

↓ (R-RETURN)
o : BST[{f : Node}] ∗ o ` o3

Figure 3.17: Two examples of reduction and typing (heaps, indices and rightmost typing
context omitted), assuming a simplified initial heap of the form h = (o = BST{f = o1})

Example. In order to present an example of reduction and typing, we simplify method

insert from class BST in Chapter 2, and then extract its body that becomes

case f of Nil⇒ f := new Node() | Node⇒ f.m()

where f denotes the only field of class BST (which we named root in the example), m is

a method of f (corresponding to method add in the example), and where we have ignored

parameters as well as fields in class Node, with init being a constructor with an empty

body. We also sacrifice types which cannot be fully detailed in the example for space

reasons, omitting Σ and indices. The rather simplified initial typing context becomes

BST[{f : Nil + Node}]

We then follow the execution of the above method body in Figure 3.17, showing how the

typing context changes as the term reduces.

Chapter 4

Type Soundness

Having introduced the syntax and the static and dynamic semantics of DOL, in this chap-

ter we prove by standard techniques [Wright and Felleisen, 1994] the expected result, that

is, type soundness via subject reduction and progress.

We need to define a set of additional rules and prove a number of basic lemmas which

support the soundness result, namely inversion of the term typing relation, exchange for

object contexts, weakening for index contexts, substitution for objects in term typing,

substitution for indices, substitution for class types, and agreement of judgements. We

also prove soundness and instantiation of function mtype as well as two lemmas (opening

and closing) for the replacement of an internal object type by an equivalent top-level one

when typing the heap. We then show that in well-formed DOL programs the types of

objects describe their runtime values, that there never exists more than one reference to a

linear object, and that all aliasing never produce a value of unexpected type. Figure 4.1

shows a dependency graph of the main lemmas defined in this chapter.

Chapter Outline. This chapter is structured as follows:

• Section 4.1 gives a new set of rules for heaps and states that we need for the proofs.

• Section 4.2 defines basic properties of typing.

• Section 4.3 deals with the relation between an internal field typing and its top-level

type in the style of Gay et al. [2015], adjusted to our requirements.

• Section 4.4 provides lemmas for evaluation contexts in the style of Wright and

Felleisen [1994], adapted to our requirements.

• Section 4.5 proves the first key result, subject reduction.

53

54 CHAPTER 4. TYPE SOUNDNESS

Subject Reduction for
Object Initialisation

(4.21)

Subject Reduction
(4.22)

Closed
Class Families

(4.14)

Inversion of
Term Typing

(4.4)

Exchange for
Object Contexts

(4.5)

Weakening for
Index Contexts

(4.7)

Agreement of
Judgements

(4.13)

Substitution
for Indices

(4.9)

for Objects
(4.8)

for Types
(4.10)

Closing
(4.18)

Opening
(4.17)

Subterm
Typing
(4.19)

Class/mtype
Relation
(4.15)

Subterm
Replacement

(4.20)

Instantiation
(4.16)

Figure 4.1: Dependency structure of the lemmas that support subject reduction

• Section 4.6 proves the second key result, progress.

4.1 State and Heap Typing

In order to establish type soundness, we first give additional definitions and relations that

describe heaps and runtime states.

Definition 4.1 (Initial Heap and Object Context). In any well-formed program, h0 and Γ0

represent the initial heap and object context such that h0 = (top = Top{}, false =

Boolean{}, true = Boolean{}) and Γ0 = (top : Top, false : Boolean false, true :

Boolean true).

Definition 4.2 (Children of Objects in the Heap). Let h be a heap. Then for any object

o = C{f1 = o1, . . . , fn = on} such that o ∈ h with n ≥ 0, the children of o, notation

childrenh(o), is defined as the set {o1, . . . , on}.

Definition 4.3. A heap h is complete if for any o ∈ dom(h), childrenh(o) ⊆ dom(h).

In Figure 4.2 we give the additional set of typing rules. For typing the heap, we use a

judgement of the form

4.1. STATE AND HEAP TYPING 55

∆; Γ ` h Under contexts ∆; Γ, heap h is well-formed

∆ ` Γ (T-EMPTYHEAP)
∆; Γ ` ε

∆; Γ1 ` h ∆; Γ1 ∗ o ` ō : F (f̄) a ∆; Γ2, o : C[F] ∗ o
(T-HEAP)

∆; Γ2, o : C[F] ` h, (o = C{f̄ = ō})

∆; Γ, o : C[F] ` h ∆; Γ, o : C[F] ` o : Cī a ∆
(T-HEAPHIDE)

∆; Γ, o : Cī ` h

∆1; Γ1 ` S : T a ∆2; Γ2 ∗ r
Under initial contexts ∆1; Γ1, state S has type T ,
with final contexts ∆2; Γ2 and path r

h complete
dom(Γ1) ⊆ dom(h) ∆1; Γ1 ` h ∆1; Γ1 ∗ r1 ` t : T a ∆2; Γ2 ∗ r2 (T-STATE)

∆1; Γ1 ` (h ∗ r1, t) : T a ∆2; Γ2 ∗ r2

∆1; Γ1 ` (h ∗ r, t̄) : T̄ a ∆2; Γ2 ∗ r
Under initial contexts ∆1; Γ1, state (h ∗ r, t̄) has type T̄ ,
with final contexts ∆2; Γ2 and the same path r

h complete
dom(Γ1) ⊆ dom(h) ∆1; Γ1 ` h ∆1; Γ1 ∗ r ` t̄ : T̄ a ∆2; Γ2 ∗ r (T-MULTISTATE)

∆; Γ1 ` (h ∗ r, t̄) : T̄ a ∆2; Γ2 ∗ r

Figure 4.2: Typing rules for heaps and states

∆; Γ ` h

that states that under contexts ∆; Γ the heap h is well-formed. By rule T-EMPTYHEAP,

a heap is constructed from typing contexts containing assumptions and types for all the

objects relative to locations added to the heap by rule T-HEAP. The latter ensures that each

heap entry has the prescribed field typing. The most important feature of this rule is that all

aliases of linear references are explicitly forbidden by the rightmost premise. When typing

sequenced objects ō as part of a runtime state, we rely on rule T-MULTI (Figure 3.14) that

uses T-UNVAR and T-LINVAR as appropriate to type each object. In particular, for each

linear ok in o1, . . . , on, with 1 ≤ k ≤ n, the initial typing context contains ok and the final

one of the extended heap does not, meaning that a heap that contains multiple references

to the same linear object is not be typable. The similar inverse argument justifies the

existence of cyclic structures in the heap. Rule T-HEAPHIDE is used as needed in order

to replace an internal object type by an equivalent top-level one (cf. Gay et al. [2015]).

Finally, we use the two following judgements

∆1; Γ1 ` S : T a ∆2; Γ2 ∗ r and ∆1; Γ1 ` (h ∗ r, t̄) : T̄ a ∆2; Γ2 ∗ r

to type states and formalize the main invariant of subject reduction. By rule T-STATE,

given a state S of the form (h ∗ r1, t), the heap h must be compatible with a context Γ1

56 CHAPTER 4. TYPE SOUNDNESS

under the assumptions in ∆1, both of which are the initial contexts that type the run-

time term t, knowing from the leftmost premises that h is complete and that dom(Γ1) ⊆
dom(h), i.e. that every object that has a type in Γ1 appears in h along with all of its chil-

dren. Rule T-MULTISTATE describes how the two parts of a runtime state for sequenced

terms (composed of a heap h with path r and sequenced terms t̄) are related by typing.

4.2 Properties of Typing

We now prove a number of basic lemmas.

4.2.1 Inversion

Inversion of the term typing relation is a simple result used throughout our proofs.

Lemma 4.4 (Inversion of the Term Typing Relation). Let ∆1; Γ1∗r1 ` t : T a ∆2; Γ2∗r2.

Then, depending on t, we have the following:

1. If t = o, then ∆1 ` Γ1 with ∆2 = ∆1 and r2 = r1 and Γ1 = (Γ3, o : U) for some

Γ3 and U such that ∆1 ` U <: T , and either

• un(U) and Γ2 = Γ1, or

• lin(U) and Γ2 = Γ3.

2. If t = f , then ∆1; Γ1 ` r.f : U a ∆2 and un(U) with ∆2 = ∆1 and Γ2 = Γ1 and

r2 = r1 and ∆2 ` U <: T .

3. If t = new C(), then ∆1 ` Γ1 and ∆1 ` C.init <: T with ∆2 = ∆1 and Γ2 = Γ1

and r2 = r1.

4. If t = (f := t′), then ∆1; Γ1∗r1 ` t′ : U a ∆2; Γ3∗r2 and ∆2; Γ3 ` r2 : C[F] a ∆2

and ∆2; Γ2 ` r2 : Cī a ∆2 with Γ2 = Γ3{r2.f ←[U} and ∆2 ` F (f) <: T .

5. If t = (t1; t2), then ∆1; Γ1 ∗ r1 ` t1 : U1 a ∆3; Γ3 ∗ r2 and ∆3; Γ3 ∗ r2 ` t2 : U2 a
∆2; Γ2 ∗ r2 with un(U1) and ∆2 ` U2 <: T .

6. If t = m(t′), then ∆1; Γ1 ∗ r1 ` t′ : U [θ] a ∆3; Γ3 ∗ r2 and ∆3; Γ3 ` r2 : Cī a ∆3

and ∆3; Γ3{r2 ←[V [θ]} ` r2 : Cj̄ a ∆2 with Γ2 = Γ3{r2 ←[fields(Cj̄)} and

mtype(m,Cī) = Π∆.(Cī V × U → W) and ∆3 ` ∆ : θ and ∆2 ` W [θ] <: T .

7. If t = f.m(t′), then Γ1 = (Γ, r1 : C[F]) and ∆1; Γ1 ∗ r1 ` t′ : U [θ] a ∆3; Γ3 ∗ r2

and ∆3; Γ3 ` r2.f : T1 a ∆2 and ∆2; Γ2 ` r2 : Cī a ∆2 with Γ2 = Γ3{r2.f ←[

4.2. PROPERTIES OF TYPING 57

T2[θ]} and mtype(m,T1) = Π∆.(T1 T2 × U → W) and ∆2 ` ∆ : θ and ∆2 `
W [θ] <: T .

8. If t = (return t′), then ∆1; Γ1 ∗ r1 ` t′ : U a ∆2; Γ3 ∗ r2.f and ∆2; Γ3 `
r2.f : C[F] a ∆2 with ∆2 ` C[F] <: fields(V) and Γ2 = Γ3{r2.f ← [V } and

∆2 ` U <: T .

9. If t = (case f of (Ck ⇒ tk)k∈1,2), then ∆1; Γ1 ` r1.f : (U1 + U2) a ∆3 and

∆3; Γ1{r1.f ←[Uk}∗r1 ` tk : U a ∆2; Γ2∗r1 with classof(Uk) = Ck and C1 6= C2

and ∆2 ` U <: T and r2 = r1.

10. If t = (if t′ then t1 else t2), then ∆1; Γ1 ∗ r1 ` t′ : Boolean p a ∆3; Γ3 ∗ r2 and

∆3, p; Γ3 ∗ r2 ` t1 : U a ∆2; Γ2 ∗ r2 and ∆3,¬p; Γ3 ∗ r2 ` t2 : U a ∆2; Γ2 ∗ r2 with

∆2 ` U <: T .

11. If t = (while t1 do t2), then ∆1; Γ1 ∗ r1 ` t1 : Boolean p a ∆3; Γ2 ∗ r2 and

∆3, p; Γ2 ∗ r2 ` t2 : T a ∆3; Γ2 ∗ r2 with T = Top and ∆2 = (∆3,¬p).

Proof. By simple inspection of the typing rules. Any derivation concludes with ∆1; Γ1 ∗
r1 ` t : T a ∆2; Γ2 ∗ r2, using the “natural” typing rule for t, followed by any number

of applications of the rule T-SUB to obtain that result whenever ∆1; Γ1 ∗ r1 ` t : U a
∆2; Γ2 ∗ r2.

4.2.2 Exchange and Weakening

Towards type soundness, we establish basic structural properties satisfied by the core

language. As noted in Chapter 3, the ordering of variables is irrelevant in the context Γ,

and makes no difference in the heap h (but crucial in the context ∆). The first property,

exchange, defined for Γ and h only, states exactly that. A corollary of exchange is that if

we can typecheck a term with Γ, then we can typecheck that term with any permutation

of the variables in Γ, and the same applies to h. We also define an object swapping lemma

for rearranging objects in a sequence. Finally, weakening, defined for a context ∆, allows

introducing new items in the index typing context without affecting typing relations.

Lemma 4.5 (Exchange for Object Contexts).

1. If ∆1; Γ1 ` r : T a ∆2 and Γ2 is a permutation of Γ1, then ∆1; Γ2 ` r : T a ∆2.

2. If ∆1; Γ1 ∗ r1 ` t : T a ∆2; Γ2 ∗ r2 and Γ3 is a permutation of Γ1, then ∆1; Γ3 ∗
r1 ` t : T a ∆2; Γ4 ∗ r2 where Γ4 is a permutation of Γ2. (And similarly for

∆1; Γ1 ∗ r ` t̄ : T̄ a ∆2; Γ2 ∗ r.)

58 CHAPTER 4. TYPE SOUNDNESS

3. If ∆; Γ ` h1 and h2 is a permutation of h1, then ∆; Γ ` h2.

Proof. By rule induction on typing derivations. Parts 1 and 2 are proved together. Part 3

then follows by another induction using part 2.

Lemma 4.6 (Object Swapping). If ∆; Γ1∗r ` ōoō′o′ : T̄ T T̄ ′U a ∆; Γ2∗r, then ∆; Γ1∗r `
ōo′ō′o : T̄UT̄ ′T a ∆; Γ2 ∗ r.

Proof. By a straightforward rearrangement of the derivation tree that concludes with rule

T-MULTI.

Lemma 4.7 (Weakening for Index Contexts). Let ` ∆1,∆2. If ∆1 ` T : K, then

∆1,∆2 ` T : K. (And similarly for ∆1 ` T <: U , for ∆1; Γ ` r : T a ∆3, for

∆1; Γ1 ∗ r1 ` t : T a ∆3; Γ2 ∗ r2 and for ∆1; Γ ` h.)

Proof. By rule induction on derivations of the corresponding judgement provided as the

second hypothesis.

4.2.3 Substitution

Substitution is defined in the object and index systems. It allows substituting a param-

eter x by an object reference o in a term t, an index variable a by an index term i in a

type T , and a type Dj̄ by a type Cī in a type T , provided Cī is a subtype of Dj̄. Re-

garding index substitution, recall that, from Section 3.2.2, a single index substitution is

extended pointwise to multiple index substitution θ, built using the rules in Figure 3.6.

We also define a composition of index substitutions by merging the two sets.

Lemma 4.8 (Substitution for Objects). If ∆1; Γ1 ∗ r ` o : U a ∆1; Γ2 ∗ r and ∆1; Γ2 `
r : C[F1] a ∆1 and ∆1;x : U, this : C[F1] ∗ this ` t : W a ∆2; Γ, this : C[F2] ∗ this, then

∆1; Γ1 ∗ r ` t[o/x] : W a ∆2; Γ2{r ←[C[F2]} ∗ r.

Proof. By rule induction on the structure of t. We show the base case and one inductive

case. The rest can be proved similarly.

Case t = x. By Lemma 4.4 (Inversion of the Term Typing Relation) on the first hypoth-

esis, there are two cases to consider: if un(U), then Γ2 = Γ1, otherwise Γ2 = Γ1 \ o.
Use inversion again but on the third hypothesis, and make a similar unrestricted/linear

distinction to conclude that, depending on the nature of U , either Γ is x : U or Γ is empty.

Finally, notice that in the case of lin(U), the path r cannot not start with o because of

the second hypothesis, hence the current object r cannot be t, and all the premises are

satisfied.

4.2. PROPERTIES OF TYPING 59

Case t = t1; t2. By Lemma 4.4 (Inversion of the Term Typing Relation) on the third

hypothesis,

(1) ∆1;x : U, this : C[F1] ∗ this ` t1 : U1 a ∆3; Γ3 ∗ this

(2) ∆3; Γ3 ∗ this ` t2 : U2 a ∆2; Γ, this : C[F2] ∗ this

(3) un(U1)

(4) ∆2 ` U2 <: W

Notice that because of the final context in (2), the initial context Γ3 must be (Γ′, this :

C[F3]). Use the induction hypothesis with the first two hypothesis and (1) to obtain

(5) ∆1; Γ1 ∗ r ` t1[o/x] : U1 a ∆3; Γ2{r ← [C[F3]} ∗ r

Without loss of generality, let Γ′ be x : U . Then, replace the type of r in the initial

context of the first hypothesis, which propagates to the second hypothesis as follows:

∆3; Γ1{r ←[C[F3]} ∗ r ` o : U a ∆3; Γ2{r ← [C[F3]} ∗ r and ∆3; Γ2{r ←[C[F3]} `
r : C[F3] a ∆3. Use these judgements with (2) and the induction hypothesis to obtain

(6) ∆3; Γ2{r ←[C[F3]} ∗ r ` t2[o/x] : U2 a ∆2; Γ2{r ←[C[F2]} ∗ r

Conclude by using (3),(4), (5) and (6) with rules T-SEQ and T-SUB.

Lemma 4.9 (Substitution for Indices). Suppose ∆1 ` ∆2 : θ.

1. If ∆2 ` T : K, then ∆1 ` T [θ] : K[θ]. (And similarly for ∆2 ` T <: U .)

2. If ∆2; Γ1 ∗ r1 ` t : T a ∆3; Γ2 ∗ r2, then ∆1; Γ1[θ]∗ r1 ` t : T [θ] a ∆3[θ]; Γ2[θ]∗ r2.

(And similarly for ∆2; Γ ` r : T a ∆3.)

Proof. By rule induction on the derivation of the corresponding judgement provided as

the hypothesis for each part.

Lemma 4.10 (Substitution for Types). If ∆ ` T : K and ∆ ` Cī <: Dj̄, then ∆ `
T [Cī/Dj̄] : K. (And similarly for ∆ ` T <: U .)

Proof. By rule induction on the derivation of the judgement given as the first hypothesis.

Lemma 4.11 (Substitution Composition). Let ` ∆1∆2. If ∆ ` ∆1 : θ1 and ∆ ` ∆2 : θ2,

then ∆ ` ∆1∆2 : θ1θ2.

Proof. By rule induction on the derivation of the second hypothesis, noticing that we

follow Barendregt [1984]’s variable convention whereby a variable should appear no more

than once, so this composition of substitutions is just their union.

60 CHAPTER 4. TYPE SOUNDNESS

4.2.4 Agreement

In this section, we define properties that describe the behaviour of well-formed contexts,

and show agreement between judgements, e.g. that every term in the object system has a

type of kind ?. The next proposition is a direct consequence of the rules for well-formed

programs and heaps (Figures 3.13 and 4.2)

Proposition 4.12 (Typing Context Properties).

1. If ∆1; Γ1, o : T ∗ r1 ` t : U a ∆2; Γ2 ∗ r2, then ∆1 ` T : ?. (And similarly for

∆1; Γ, o : T ` r : U a ∆2.)

2. If ∆; Γ ` r : C[{f1 : T1, . . . , fn : Tn}] a ∆, then ∆ ` Tk : ? for 1 ≤ k ≤ n

3. If ∆; Γ ` h, then ∆ ` Γ.

Lemma 4.13 (Agreement of Judgements).

1. If ∆ ` T : K, then ∆ ` K.

2. If ∆1; Γ1 ∗ r1 ` t : T a ∆2; Γ2 ∗ r2, then ∆2 ` T : ?. (And similarly for ∆1; Γ `
r : T a ∆2.)

3. If ∆ ` T <: U , then ∆ ` T : K and ∆ ` U : K for some K.

Proof. By rule induction on the derivations of the hypothesis; parts 2 and 3 are proved to-

gether. Use Proposition 4.12 (Typing Context Properties) for rules T-REF, T-UNVAR, T-

LINVAR and T-UNFIELD, Lemma 4.9 (Substitution for Indices) for rules T-SELFCALL,

T-CALL, K-APP, S-APP, S-ΠL and S-ΣR. The remaining cases follow by simple induc-

tions.

The next lemma concerns a property of object creation, stating that any initialisation

does not have side effects. This is a consequence of rule T-INIT (Figure 3.13) by which

the constructor may only initialise local objects using new. In practice, this means that

new C() does depend on the initial and final typing contexts.

Lemma 4.14 (Closed Class Families). Let ∆ ` Γ. If ∆1; Γ1 ∗ r ` new C̄() : T̄ a
∆2; Γ2 ∗ r, then ∆; Γ ∗ r ` new C̄() : T̄ a ∆; Γ ∗ r.

Proof. By induction on the length of new C̄().

4.2. PROPERTIES OF TYPING 61

4.2.5 Soundness of Function mtype

We use the properties of substitution to prove soundness of function mtype, first by re-

lating it with the hierarchy of classes and then by showing its instantiation with function

mbody.

Lemma 4.15 (Class/mtype Relation). If ∆1 ` Cī : ? and mtype(m,Cī) = U , then ∆1 `
U : ?.

Proof. By rule induction on the derivation of mtype(m,Cī).

Case MT-CLASS. Then,

class C : (ā : Ī) extends T{. . . ,m : V, . . .} is { }

U = V [̄i/ā]

Let ∆2 = ā : Ī and θ = ī/ā. Notice that the hypothesis ∆1 ` Cī : ? is derived from one

application of rule K-CLASS possibly followed by rule K-APP applied as many times as

needed. Use this derivation to build ∆1 ` ∆2 : θ. On the other hand, by rules T-CLASS

and T-MTYPE, we have ∆2 `T m : V whose premises imply that ∆2 ` V : ?. Then,

apply Lemma 4.9 (Substitution for Indices) to conclude with ∆1 ` V [θ] : ?.

Case MT-SUPER. Then,

class C : (ā : Ī) extends Dj̄{l̄ : } is { }

m 6∈ l̄

Cī = Cī′̄i′′

mtype(m,Dj̄ [̄i/ā]) = W

U = W [Cī′/D]

Let ∆2 = ā : Ī and θ = ī/ā. As in the previous case, use the fact that the hypothesis ∆1 `
Cī : ? is derived by one application of rule K-CLASS possibly followed by rule K-APP

applied as many times as needed in order to build ∆1 ` ∆2 : θ. By rule T-CLASS, we

have ∆2 ` Dj̄ : ?. Apply Lemma 4.9 (Substitution for Indices) to obtain ∆1 ` Dj̄[θ] : ?.

From this and mtype(m,Dj̄[θ]) = W , use the induction hypothesis to get ∆1 ` W : ?.

Conclude with Lemma 4.10 (Substitution for Types) by using ∆1 ` Cī <: Dj̄[θ] (implied

by extends).

Lemma 4.16 (Instantiation). If mbody(m,C) = λx.t and ∆1 ` T1 : ? and mtype(m,T1) =

Π∆2.(T1 T2 × U → W) and ∆1 ` ∆2 : θ, then there exist contexts ∆3 and Γ and a

field typing F such that

62 CHAPTER 4. TYPE SOUNDNESS

∆1;x : U [θ], this : fields(T1) ∗ this ` t : W [θ] a ∆3; Γ, this : C[F] ∗ this

with ∆3 ` C[F] <: fields(T2[θ]).

Proof. By rule induction on the derivation of mbody(m,C).

Case MB-CLASS. Then,

class C : ∆ extends { } is {. . . ,m(x) = t, . . .}

By rules T-CLASS and T-METHOD, we have `C m(x) = t whose premises are:

class C : ∆ extends {. . . ,m : Π∆′.(T T ′ × U ′ → W ′), . . .} is { }

∆,∆′;x : U ′, this : fields(T) ∗ this ` t : W ′ a ∆′′; Γ′, this : C[F ′] ∗ this

x : U ′ ∈ Γ′ ⇒ un(U ′)

∆′′ ` C[F ′] <: fields(T ′)

m 6= init

Let ∆ = ā : Ī and V = Π∆′.(T T ′ × U ′ → W ′). By definition of mtype(m,T1),

we have that type T1 is of the form Cī, and hence ∆1 ` Cī : ? and mtype(m,Cī) =

Π∆2.(Cī T2 × U → W) (by inspection of rules MT-CLASS and T-MTYPE). Let θ′ =

ī/ā. Then, notice that ∆1 ` Cī : ? is derived from one application of rule K-CLASS pos-

sibly followed by rule K-APP applied as many times as needed. Use this derivation to

build ∆1 ` ∆ : θ′. From rule MT-CLASS, we have V [θ′] = Π∆2.(Cī T2 × U → W),

which implies that ∆2 = ∆′[θ′]. By Lemma 4.11 (Substitution Composition), obtain

∆1 ` ∆∆2 : θ′θ. Then, use ∆1 ` Cī : ? and mtype(m,Cī) = V [θ′] with Lemma 4.15

(Class/mtype Relation) to get ∆1 ` V [θ′] : ?. Conclude by applying Lemma 4.9 (Sub-

stitution for Indices) to the appropriate typing judgements in the premises of T-METHOD

given above.

Case MB-SUPER. Then,

class C : ∆ extends Dj̄{ } is {M̄}

m 6∈ M̄

Let ∆ = ā : Ī and θ = ī/ā. As in the previous case, use the fact that the hypothesis

∆1 ` Cī : ? is derived by one application of rule K-CLASS possibly followed by rule

K-APP applied as many times as needed in order to build ∆1 ` ∆ : θ. By rule T-

CLASS, we have ∆ ` Dj̄ : ?. Apply Lemma 4.9 (Substitution for Indices) to obtain

∆1 ` Dj̄[θ] : ?. From this, conclude immediately by using the induction hypothesis and

4.3. HIDING FIELD TYPINGS 63

the fact that ∆1 ` Cī <: Dj̄[θ] (implied by extends).

4.3 Hiding Field Typings

The next step towards type soundness is to prove that the internal object type C[F] can

be replaced by a top-level equivalent form that hides field typings (and vice-versa) in the

judgement that types the heap. To break down the proof into smaller pieces, we define the

notion of opening a top-level type and closing the internal object type using two separate

lemmas, adapted from Gay et al. [2015] to our requirements. They enable us to show that

hiding and showing type information about the fields does not violate type preservation.

Lemma 4.17 (Opening). If ∆1; Γ ` h and ∆1; Γ ` r : Cī a ∆2 and h(r) is defined, then

∆2; Γ{r ←[fields(Cī)} ` h.

Proof. By induction on the depth of r. The base case is when r = o. Notice that the

second hypothesis is derived by rule T-REF with as many applications of T-UNPACK as

needed, and hence r ∈ dom(Γ) and ∆1 ⊆ ∆2. By Lemma 4.13 (Agreement of Judge-

ments), we have ∆2 ` Cī : ?, and from this derivation ` ∆2. Use Lemma 4.7 (Weaken-

ing for Index Contexts) on the first hypothesis to derive ∆2; Γ′, o : Cī ` h, which must be

the conclusion of rule T-HEAPHIDE. Then, ∆2; Γ ` o : Cī a ∆2 must be its premise at

the right. Conclude with the rule’s leftmost premise.

The inductive case is when r = o′.f.f̄ . The typing derivation ends with rule T-HEAP,

and field o′.f references some object o′′ typed in the rule premises by T-MULTI. Let r′ =

o′′.f̄ . Knowing from the hypothesis that ∆1; Γ ` r : Cī a ∆2, the only way that the type

of r′ in Γ can differ from Cī is if it is a Σ, hence by rule T-UNPACK ∆1 ⊆ ∆2. Conclude

with the induction hypothesis by using Lemma 4.7 (Weakening for Index Contexts) and

replacing Γ with Γ{r ←[fields(Cī)} on the first hypothesis. Then just use it as the left

premise of T-HEAP, propagating the new type of r to the remaining premises and the

conclusion.

Lemma 4.18 (Closing). If ∆; Γ ` h and ∆; Γ ` r : C[F] a ∆ and ∆ ` C[F] <:

fields(T), then ∆; Γ{r ←[T} ` h.

Proof. Again by induction on the depth of r. The base case is when r = o. Notice

that ∆; Γ ` r : C[F] a ∆ is necessarily the conclusion of T-REF, which implies that

r ∈ dom(Γ). Conclude by applying rules T-HIDE and T-HEAPHIDE using the three

hypothesis.

The inductive case is similar to the one from the preceding lemma: in the last applica-

tion of rule T-HEAP, look at the type of r′ (defined above) and notice that its use in rule

64 CHAPTER 4. TYPE SOUNDNESS

T-MULTI implies that it can only differ from the type of r by subsumption, and hence its

type must be C[F ′] with ∆ ` C[F ′] <: C[F]. By transitivity, ∆ ` C[F ′] <: fields(T).

Use the induction hypothesis to change the type of r′ to T in the leftmost premise of rule

T-HEAP, which propagates to the type of r in the conclusion.

4.4 Properties of Evaluation Contexts

Next, we provide lemmas for evaluation contexts in the style of Wright and Felleisen

[1994], conveniently adapted to our requirements. First, we show that terms in holes are

typable. Then, we prove that a subterm t1 may be replaced by a different subterm t2 with

the same type. Unlike the usual replacement lemma, our lemma allows changing typing

contexts for the term being replaced.

Lemma 4.19 (Subterm Typing). IfD1 is a derivation of the judgement ∆1; Γ1∗r1 ` E [t] :

T a ∆2; Γ2 ∗ r2, then there exists a subderivation D2 concluding ∆1; Γ1 ∗ r1 ` t : U a
∆3; Γ3 ∗ r3 for some U,∆3,Γ3 and r3 such that the position of D2 in D1 corresponds to

the position of the hole in E .

Proof. By induction on the structure of E . In any subderivation of D1, the possible posi-

tions of the hole determine that the initial contexts are always ∆1; Γ1. Suppose a term t′

such that ∆1; Γ1 ∗ r1 ` t′ : U a ∆3; Γ3 ∗ r3. It suffices to show that ∆1; Γ1 ∗ r1 ` E [t′] :

T a ∆2; Γ2 ∗ r2. All cases are similar. We provide a few examples.

Case []. Then E [t] = t. Let U = T and ∆3 = ∆2 and Γ3 = Γ2 and r3 = r2. Note that

E [t′] = t′. Then, ∆1; Γ1 ∗ r1 ` t′ : U a ∆3; Γ3 ∗ r3.

Case f := E ′. That is,

(1) ∆; Γ1 ∗ r1 ` f := E ′[t′] : T a ∆2; Γ2 ∗ r2

By Lemma 4.4 (Inversion of the Term Typing Relation),

(2) ∆1; Γ1 ∗ r1 ` E ′[t′] : U a ∆2; Γ4 ∗ r2

(3) ∆2; Γ4 ` r2 : C[F] a ∆2

(4) ∆2; Γ2 ` r2 : Cī a ∆2

(5) Γ2 = Γ4{r1.f ←[U}

(6) ∆2 ` F (f) <: T

By (2) and the induction hypothesis, there is a subderivation concluding ∆; Γ1 ∗ r1 ` t′ :

U ′ a ∆3; Γ3 ∗ r3 for some U ′,∆3,Γ3 and r3. This is the desired subderivation of D1.

4.4. PROPERTIES OF EVALUATION CONTEXTS 65

Case return t′. That is,

(1) ∆1; Γ1 ∗ r1 ` return E ′[t′] : T a ∆2; Γ2 ∗ r2

By Lemma 4.4 (Inversion of the Term Typing Relation),

(2) ∆1; Γ1 ∗ r1 ` E ′[t′] : V a ∆2; Γ4 ∗ r2.f

(3) ∆2; Γ4 ` r2.f : C[F] a ∆2

(4) ∆2 ` C[F] <: fields(U)

(5) Γ2 = Γ4{r2.f ←[U}

(6) ∆2 ` V <: T

By (2) and the induction hypothesis, there is a subderivation concluding ∆; Γ1 ∗ r1 ` t′ :

U a ∆3; Γ3 ∗ r3 for some U ′,∆3,Γ3 and r3. This is the desired subderivation of D1.

Case E ′; t2. That is,

(1) ∆; Γ1 ∗ r1 ` E ′[t′]; t2 : T a ∆2; Γ2 ∗ r2

By Lemma 4.4 (Inversion of the Term Typing Relation),

(2) ∆; Γ1 ∗ r1 ` E ′[t′] : U a ∆4; Γ4 ∗ r2

(3) ∆4; Γ4 ∗ r2 ` t2 : V a ∆2; Γ2 ∗ r2

(4) un(U)

(5) ∆2 ` V <: T

By (2) and the induction hypothesis, there is a subderivation concluding ∆1; Γ1 ∗ r1 ` t′ :
U ′ a ∆3; Γ3 ∗ r3 for some U ′,∆3,Γ3 and r3. This is the desired subderivation of D1.

Lemma 4.20 (Subterm Replacement). If

1. D1 is a derivation concluding ∆1; Γ1 ∗ r1 ` E [t1] : T a ∆2; Γ2 ∗ r2, and

2. D2 is a subderivation of D1 concluding ∆1; Γ1 ∗ r1 ` t1 : U a ∆3; Γ3 ∗ r3, and

3. the position of D2 in D1 corresponds to the position of the hole in E , and

4. ∆′1; Γ′1 ∗ r′1 ` t2 : U a ∆3; Γ′3 ∗ r3 for some Γ′3 such that Γ3 ⊆ Γ′3,

then ∆′1; Γ′1 ∗ r′1 ` E [t2] : T a ∆2; Γ′2 ∗ r2 for some Γ′2 such that Γ2 ⊆ Γ′2.

66 CHAPTER 4. TYPE SOUNDNESS

Proof. By induction on the structure of E using Lemma 4.19 (Subterm Typing). All cases

are similar: replace D2 in D1 by a derivation of ∆′1; Γ′1 ∗ r′1 ` t2 : U a ∆3; Γ′3 ∗ r3. From

the structure of E , the typings of t2 and E [t2] have the same leftmost contexts. We show a

few examples.

Case []. Let ∆′1 = ∆1 and Γ′1 = Γ1 and r′1 = r1 and Γ′2 = Γ2.

Case f := E ′. That is,

(1) ∆1; Γ1 ∗ r1 ` f := E ′[t1] : T a ∆2; Γ2 ∗ r2

By Lemma 4.4 (Inversion of the Term Typing Relation),

(2) ∆1; Γ1 ∗ r1 ` E ′[t1] : U a ∆2; Γ3 ∗ r2

(3) ∆2; Γ3 ` r2 : C[F] a ∆2

(4) ∆2; Γ2 ` r2 : Cī a ∆2

(5) Γ2 = Γ3{r2.f ←[U}

(6) ∆2 ` F (f) <: T

Let D1 be the derivation concluding (2). Then, by Lemma 4.19 (Subterm Typing), D1 has

a subderivation D2 concluding

(7) ∆1; Γ1 ∗ r1 ` t1 : U ′ a ∆′3; Γ′3 ∗ r3

such that the position of D2 in D1 corresponds to the position of the hole in E ′. Assume

there exist ∆′1,Γ
′
1, r
′
1, t2 and Γ′3 ⊆ Γ′4 such that

(8) ∆′1; Γ′1 ∗ r′1 ` t2 : U ′ a ∆′3; Γ′4 ∗ r3

By the induction hypothesis with (2), (7) and (8), there is a Γ4 such that ∆′1; Γ′1 ∗ r′1 `
E ′[t2] : U a ∆2; Γ4 ∗ r2 with Γ3 ⊆ Γ4. From (3) and rule T-REF, r2 ∈ dom(Γ3). Then use

the fact that Γ3 ⊆ Γ4 to obtain ∆2; Γ4 ` r2 : C[F] a ∆2 and ∆2; Γ′2 ` r2 : Cī a ∆2, with

Γ′2 = Γ4{r2.f ←[U}. Combine these two judgements with the one obtained by induction

and (6), and conclude by applying T-ASSIGN and T-SUB.

Case E ′; t2. That is,

(1) ∆1; Γ1 ∗ r1 ` E ′[t1]; t2 : T a ∆2; Γ2 ∗ r2

By Lemma 4.4 (Inversion of the Term Typing Relation),

(2) ∆1; Γ1 ∗ r1 ` E ′[t1] : U a ∆′3; Γ3 ∗ r2

4.5. SUBJECT REDUCTION 67

(3) ∆′3; Γ3 ∗ r2 ` t2 : V a ∆2; Γ2 ∗ r2

(4) un(U)

(5) ∆2 ` V <: T

Let D1 be the derivation concluding (2). Then, by Lemma 4.19 (Subterm Typing), D1 has

a subderivation D2 concluding

(6) ∆1; Γ1 ∗ r1 ` t1 : U ′ a ∆4; Γ′3 ∗ r3

such that the position of D2 in D1 corresponds to the position of the hole in E ′. Assume

there exist ∆′1,Γ
′
1, r
′
1, t3 and Γ′3 ⊆ Γ′4 such that

(7) ∆′1; Γ′1 ∗ r′1 ` t3 : U ′ a ∆4; Γ′4 ∗ r3

By the the induction hypothesis with (2), (6) and (7), there is a Γ4 such that ∆′1; Γ′1 ∗ r′1 `
E ′[t3] : U a ∆′3; Γ4 ∗ r2 with Γ3 ⊆ Γ4. From this, replace Γ3 with Γ4 in (3) in order to

obtain ∆′3; Γ4 ∗ r2 ` t2 : V a ∆2; Γ′2 ∗ r2. Conclude from these two typing judgements by

applying T-SEQ and T-SUB using (4) and (5).

4.5 Subject Reduction

The most important property of DOL’s system is subject reduction, which ensures that

reduction preserves typings. For object initialisation, subject reduction is a matter of

showing that newly created objects are not already used in the heap, and that all the

children objects are initialised and have the type declared by the location (field) they

represent. We prove this result in a separate lemma and then use it in the proof of the

theorem.

Lemma 4.21 (Subject Reduction for Object Initialisation). Suppose that P is a well-

formed program (` P). In this context, let Γ0 ⊆ Γ1 and h0 ⊆ h1.

1. If ∆; Γ1 ` (h1 ∗ r, new C()) : T a ∆; Γ1 ∗ r and (h1 ∗ r, new C()) −→ (h2 ∗ r, o),

then ∆; Γ′1 ` (h2 ∗ r, o) : T a ∆; Γ2 ∗ r for some Γ′1 and Γ2 such that Γ1 ⊆ Γ2.

2. If ∆; Γ1 ` (h1 ∗ r, new C̄()) : T̄ a ∆; Γ1 ∗ r and (h1 ∗ r, new C̄()) −→ (h2 ∗ r, ō),

then ∆; Γ′1 ` (h2 ∗ r, ō) : T̄ a ∆; Γ2 ∗ r for some Γ′1 and Γ2 such that Γ1 ⊆ Γ2.

Proof. By mutual induction on the premises of reduction.

68 CHAPTER 4. TYPE SOUNDNESS

Case R-NEW. Then,

mbody(init, C) = f̄ := new C̄()

(h1 ∗ r, new C̄()) −→ (h3 ∗ r, ō)

o 6∈ dom(h3)

h2 = (h3, o = C{f̄ = ō})

Notice that a well-formed program (` P) and mbody(init, C) imply that the method init

appears in the declaration of class C. From rule T-CLASS, `C init() = f̄ := new C̄()

which is necessarily the conclusion of rule T-INIT whose premises are:

(i) fields(C.init) = C[F]

(ii) ε; ε ∗ r ` new C̄() : F (f̄) a ε; ε ∗ r

(iii) no cycles in C

We claim that the final state typing ∆; Γ′1 ` (h2 ∗ r, o) : T a ∆; Γ2 ∗ r has an initial

context Γ′1 = (Γ′3, o : C.init) with Γ′3 = (Γ1,Γ) where Γ depends on the unrestricted/-

linear nature of each object ok in ō = o1, . . . , on and 1 ≤ k ≤ n that may have been

“consumed” along the derivation of the judgement, or may be carried unchanged from Γ′1

to Γ2. Moreover, depending on the unrestricted/linear nature of type C.init, context Γ2 is

either Γ′1 or Γ′1 \ o. Either way, notice that Γ1 ⊆ Γ2.

Proving the claim proceeds through a number of steps, each contributing to build the

final state typing. Start by reading the premises of rule T-STATE from the hypothesis,

which are:

(1) h1 complete

(2) dom(Γ1) ∈ dom(h1)

(3) ∆; Γ1 ` h1

(4) ∆; Γ1 ∗ r ` new C() : T a ∆; Γ1 ∗ r

By Lemma 4.4 (Inversion of the Term Typing Relation) on (4), obtain ∆1 ` Γ1. Use it

with (ii) and Lemma 4.14 (Closed Class Families) to get ∆; Γ1 ∗ r ` new C̄() : F (f̄) a
∆; Γ1 ∗ r. Combine this result with (1), (2) and (3) and apply rule T-MULTISTATE,

∆; Γ1 ` (h1 ∗ r, new C̄()) : F (f̄) a ∆; Γ1 ∗ r. From here, do an induction using the

second premise of R-NEW to get Γ3,Γ
′
3 such that ∆; Γ3 ` (h3 ∗ r, ō) : F (f̄) a ∆; Γ′3 ∗ r

with Γ1 ⊆ Γ′3. This judgement is necessarily the conclusion of T-MULTISTATE whose

premises are:

4.5. SUBJECT REDUCTION 69

(5) h3 complete

(6) dom(Γ3) ∈ dom(h3)

(7) ∆; Γ3 ` h3

(8) ∆; Γ3 ∗ r ` ō : F (f̄) a ∆; Γ′3 ∗ r

Since o is fresh, build a derivation that adds o to the heap, and by which (7) and (8)

become

(9) ∆; Γ3, o : C[F] ` h3

(10) ∆; Γ3, o : C[F] ∗ r ` ō : F (f̄) a ∆; Γ′3, o : C[F] ∗ r

Use these judgements in the premises of rule T-HEAP; follow by rule T-HEAPHIDE with

∆; Γ′3, o : C[F] ` o : C.init a ∆ to obtain ∆; Γ′3, o : C.init ` h2. By Proposition 4.12

(Typing Context Properties), ∆ ` (Γ′3, o : C.init). By Lemma 4.4 (Inversion of the Term

Typing Relation) on (4), ∆ ` C.init <: T . Use these two judgements with T-UNVAR

or T-LINVAR as appropriate, followed by T-SUB, to deduce ∆; Γ′3, o : C.init ∗ r ` o :

T a ∆; Γ2 ∗ r. Notice that r cannot start with o since o is fresh. Also, (5) and (6) imply

h2 complete and dom(Γ′3, o : C.init) ∈ dom(h2). From this, conclude with rule T-STATE

by using the result from T-HEAPHIDE and the one from T-SUB.

Case R-MULTINEW. Let new C̄() = new C()new C̄ ′() and T̄ = T T̄ ′ with new C̄ ′() 6=
ε. Then,

(h1 ∗ r, new C()) −→ (h3 ∗ r, o)

(h3 ∗ r, new C̄ ′()) −→ (h2 ∗ r, ō′)

new C̄ ′() = new C()new C̄ ′()

ō = oō′

Notice that the hypothesis is necessarily the conclusion of T-MULTISTATE whose premises

are:

(1) h1 complete

(2) dom(Γ1) ⊆ dom(h1)

(3) ∆; Γ1 ` h1

(4) ∆; Γ1 ∗ r ` new C()new C̄ ′() : T T̄ ′ a ∆; Γ1 ∗ r

By (4) and the premises of T-MULTI,

70 CHAPTER 4. TYPE SOUNDNESS

(5) ∆; Γ1 ∗ r ` new C() : T a ∆; Γ1 ∗ r

(6) ∆; Γ1 ∗ r ` new C̄ ′() : T̄ ′ a ∆; Γ1 ∗ r

By Lemma 4.4 (Inversion of the Term Typing Relation) on (5), ∆ ` C.init <: T . Use

inversion also on (6) to obtain ∆ ` C̄ ′.init <: T̄ ′.

We claim that the final state typing ∆; Γ′1 ` (h2 ∗ r, ō) : T̄ a ∆; Γ2 ∗ r has an initial

context Γ′1 = (Γ1, ō : C̄.init) and that the final context Γ2 depends on the unrestricted/lin-

ear nature of each object ok in ō = o1, . . . , on for 1 ≤ k ≤ n that may be “consumed” in

the premises of the judgement, or be carried unchanged from Γ′1 to Γ2.

Again, proving the claim proceeds through a number of steps. Combine (1), (2), (3)

and (5) and apply rule T-STATE to obtain ∆; Γ1 ` (h ∗ r, new C()) : T a ∆; Γ1 ∗r. Then,

do an induction using the first premise of R-MULTINEW to get Γ3 = (Γ1, o : C.init) and

Γ′3 such that ∆; Γ3 ` (h3 ∗ r, o) : T a ∆; Γ′3 ∗ r with Γ1 ⊆ Γ′3. From the premises of rule

T-STATE,

(7) h3 complete

(8) dom(Γ3) ⊆ dom(h3)

(9) ∆; Γ3 ` h3

(10) ∆; Γ3 ∗ r ` o : T a ∆; Γ′3 ∗ r

By (9) and Proposition 4.12 (Typing Context Properties), ∆ ` Γ3. From this, use

Lemma 4.14 (Closed Class Families) with (6) to obtain ∆; Γ3 ∗ r ` new C̄ ′() : T̄ ′ a
∆; Γ3 ∗ r. Do a second induction using the second premise of R-MULTINEW to get

Γ′1 = (Γ3, ō
′ : C̄ ′.init) and Γ′2 such that ∆; Γ′1 ` (h2 ∗ r, ō′) : T̄ ′ a ∆; Γ′2 ∗ r with

Γ′3 ⊆ Γ′2. Towards the final context Γ2, we need an additional step. From the premises of

T-MULTISTATE,

(11) h2 complete

(12) dom(Γ′1) ⊆ dom(h2)

(13) ∆; Γ′1 ` h2

(14) ∆; Γ′1 ∗ r ` ō′ : T̄ ′ a ∆; Γ′2 ∗ r

Since Γ′1 = (Γ3, ō
′ : C̄ ′.init), rearrange (10) and (14) in the premises of rule T-MULTI

using Lemma 4.6 (Object Swapping) to obtain ∆; Γ′1 ∗ r ` ō : T̄ a ∆; Γ2 ∗ r. Conclude

from this result with (11), (12) and (13) by applying rule T-MULTISTATE.

4.5. SUBJECT REDUCTION 71

Theorem 4.22 (Subject Reduction). Suppose that P is a well-formed program (` P).

In this context, let Γ0 ⊆ Γ1 and h0 ⊆ h1, and S1 = (h1 ∗ r1, t). If ∆1; Γ1 ` S1 : T a
∆2; Γ2 ∗ r2 and S1 −→ S2, then ∆′1; Γ′1 ` S2 : T a ∆2; Γ′2 ∗ r2 for some ∆′1,Γ

′
1 and Γ′2

such that ∆1 ⊆ ∆′1 and Γ2 ⊆ Γ′2.

Proof. By rule induction on the premise S1 −→ S2. For this proof, we use the hypothesis

∆1; Γ1 ` S1 : T a ∆2; Γ2 ∗ r1, which is necessarily the conclusion of rule T-STATE,

whose premises are:

(a) h1 complete

(b) dom(Γ1) ⊆ dom(h1)

(c) ∆1; Γ1 ` h1

(d) ∆1; Γ1 ∗ r1 ` t : T a ∆2; Γ2 ∗ r2

We start with the inductive case. Then, to prove the base cases, we will repeatedly apply

the appropriate clause of Lemma 4.4 (Inversion of the Term Typing Relation) on (d).

Case R-CONTEXT. Then,

t = E [t1]

(h1 ∗ r1, t1) −→ (h2 ∗ r′1, t2)

S2 = (h2 ∗ r′1, E [t2])

Let D1 be the typing derivation concluding (d), that is, ∆1; Γ1 ∗ r1 ` E [t1] : T a
∆2; Γ2 ∗ r2. From this and Lemma 4.19 (Subterm Typing), D1 has a subderivation D2

concluding ∆1; Γ1 ∗ r1 ` t1 : U a ∆3; Γ3 ∗ r3 for some U,∆3,Γ3 and r3 such that the

position ofD2 inD1 corresponds to the position of the hole in E . Use this judgement with

(a), (b), (c) and rule T-STATE to get ∆1; Γ1 ` (h1 ∗ r1, t1) : U a ∆3; Γ3 ∗ r3. Now, use

the induction hypothesis with the premise of R-CONTEXT and the assumption (` P) to

obtain ∆′1,Γ
′
1 and Γ′3 such that ∆′1; Γ′1 ` (h2 ∗ r′1, t2) : U a ∆3; Γ′3 ∗ r3 with ∆1 ⊆ ∆′1 and

Γ3 ⊆ Γ′3. From this, by reading the premises of rule T-STATE:

(1) h2 complete

(2) dom(Γ′1) ⊆ dom(h2)

(3) ∆′1; Γ′1 ` h2

(4) ∆′1; Γ′1 ∗ r′1 ` t2 : U a ∆3; Γ′3 ∗ r3

72 CHAPTER 4. TYPE SOUNDNESS

Use the judgements concluding D1 and D2 together with (4) and Lemma 4.20 (Subterm

Replacement) to obtain ∆′1; Γ′1 ∗ r′1 ` E [t2] : T a ∆2; Γ′2 ∗ r2 with Γ2 ⊆ Γ′2. Conclude

from this with (1), (2) and (3) by applying rule T-STATE.

Case R-NEW. Let ∆′1 = ∆1. Immediate by applying Lemma 4.21 (Subject Reduction

for Object Initialisation).

Case R-ASSIGN. Then,

t = (f := o′)

h1(r1).f = o

S2 = (h1{f ← [o′} ∗ r1, o)

Without loss of generality, let h1 = h, (r1 = C{f1 = o1, . . . , fn = on}), with n ≥ 1,

and let f = fn, hence h1(r1).fn = o. By (c) and the premises of rule T-HEAP,

(1) ∆1; Γ ` h

(2) ∆1; Γ ∗ r ` o1 . . . on−1 : F (f1) . . . F (fn−1) a ∆1; Γ′ ∗ r1

(3) ∆1; Γ′ ∗ r ` o : F (f) a ∆1; Γ1 ∗ r1

(4) Γ1 = Γ′′, r1 : C[F]

By inversion of (d),

(5) ∆1; Γ1 ∗ r1 ` o′ : U a ∆1; Γ3 ∗ r1

(6) ∆1; Γ3 ` r1 : C[F] a ∆1

(7) ∆1; Γ2 ` r1 : Cī a ∆1

(8) Γ2 = Γ3{r1.f ←[U}

(9) ∆1 ` F (f) <: T

(10) ∆2 = ∆1

Consider judgements (2) and (3) in the premises of T-HEAP together with judge-

ments (5) and (6) from inverting (d). Notice that (6) implies that either r1 6∈ o1, . . . , on, o
′,

or r1 is unrestricted. Indeed, if r1 is linear the effect of typing r1 in (2), (3) or (5) can

only be to remove it from the context, which contradicts (6) and the assumption on well-

formed programs (` P). Moreover, from inversion of (3), there are two cases: if un(V)

for some V such that ∆1 ` V <: F (f), then Γ1 = Γ′, otherwise Γ1 = Γ′ \ o. A similar

4.5. SUBJECT REDUCTION 73

remark applies to (5) and how the final context Γ3 relates to the initial Γ1, i.e. depending

on the unrestricted/linear nature of some type W such that ∆1 ` W <: U , either Γ3 = Γ1

or Γ3 = Γ1 \ o′.
Let ∆′1 = ∆1,Γ

′
2 = Γ2 and r2 = r1. We claim that contexts Γ′1 and Γ2 in the final state

typing ∆1; Γ′1 ∗ r1 ` (h1{f ←[o′} ∗ r1, o) : T a ∆2; Γ2 ∗ r2 differ in the same way as Γ′

and Γ1 in (3). Indeed, in the case where the inversion of (3) gives un(V), then Γ′1 = Γ2,

otherwise lin(V) and Γ′1 = (Γ2, o : V), with the final context being Γ2.

It remains to prove that the final state can be typed in the initial context Γ′1. By (6), (7)

and the premises of rule T-HIDE, ∆1; Γ2 ` r1 : C[F{f ←[U}] a ∆1. By Lemma 4.13

(Agreement of Judgements), ∆1 ` C[F{f ←[U}] : ?. Since r1 6∈ dom(h) and o ∈
dom(Γ) by (2) and (3), there is a heap typing that can be built with another type for f that

concludes with

(11) ∆1; Γ{r1.f ←[U} ` h

In possession of the modified context, use (2), (3) and (5) in Lemma 4.6 (Object Swap-

ping) to exchange o and o′ and obtain a typing judgement that is equivalent to the follow-

ing:

(12) ∆1; Γ{r1.f ←[U} ∗ r1 ` o1 . . . on−1o
′ : F (f1) . . . F (fn−1)U a ∆1; Γ′1 ∗ r1

(13) ∆1; Γ′1 ∗ r1 ` o : F (f) a ∆1; Γ2 ∗ r1

With (11), (12) and rule T-HEAP,

(14) ∆1; Γ′1 ` h, (r1 = C{f1 = o1, . . . , fn−1 = on−1, fn = o′})

On the other hand, notice that dom(h1{f ←[o′}) = dom(h1), which using (a) implies that

h1{f ←[o′} complete. Also, by the form of Γ′1 and (b), dom(Γ′1) ⊆ dom(h1{f ←[o′}).

From this with (9), (13), (14) and T-SUB, conclude by applying rule T-STATE.

Case R-SEQ. Then,

t = o; t2

S2 = (h1 ∗ r1, t2)

By inversion of (d),

(1) ∆1; Γ1 ∗ r1 ` o : U1 a ∆1; Γ3 ∗ r1

(2) ∆1; Γ3 ∗ r1 ` t2 : U2 a ∆2; Γ2 ∗ r1

(3) un(U1)

74 CHAPTER 4. TYPE SOUNDNESS

(4) ∆2 ` U2 <: T

Let ∆′1 = ∆1,Γ
′
1 = Γ1,Γ

′
2 = Γ2, and r2 = r1. Since the heap does not change, we

show that ∆1; Γ1 ` (h1 ∗ r1, t2) : T a ∆2; Γ2 ∗ r2. Noticing (3), apply inversion on (1)

to obtain Γ3 = Γ1. Conclude directly with T-STATE using (a), (b), (c) and the result of

applying T-SUB to (2) and (4).

Case R-SELFCALL. Then,

t = m(o)

h1(r1).class = C

mbody(m,C) = λx.t′

S2 = (h1 ∗ r1, t
′[o/x])

To help us build the final state typing, notice a number of facts. The hypothesis on

well-formed programs (` P) implies that methodm appears in the declaration of eitherC

or some superclass of C. Let D be the class where the method is defined. Hence, `D
m(x) = t′, which is necessarily the conclusion of T-METHOD whose premises are:

(i) class D : ∆ extends {. . . ,m : Π∆′.(T1 T2 × U → W), . . .} is { }

(ii) ∆,∆′;x : U, this : fields(T1) ∗ this ` t′ : W a ∆′′; Γ, this : D[F ′] ∗ this

(iii) ∆′′ ` C[F ′] <: fields(T2)

(iv) x : U ∈ Γ⇒ un(U)

(v) m 6= init

By inversion of (d),

(1) ∆1; Γ1 ∗ r1 ` o : U ′[θ] a ∆1; Γ3 ∗ r1

(2) ∆1; Γ3 ` r1 : Cī a ∆1

(3) ∆1; Γ3{r1 ←[T ′[θ]} ` r1 : Cj̄ a ∆2

(4) mtype(m,Cī) = Π∆3.(Cī T ′ × U ′ → W ′)

(5) ∆1 ` ∆3 : θ

(6) Γ2 = Γ3{r1 ←[fields(Cj̄)}

(7) ∆2 ` W ′[θ] <: T

4.5. SUBJECT REDUCTION 75

Let ī = ī′̄i′′ and V = Π∆′.(T1 T2 × U → W). We claim that (i) and (4) imply that

mtype(m,Cī) = V [θ′][Cī′/D] for some θ′ such that ∆1 ` ∆ : θ′ with ∆ = ā : ī and

θ′ = ī/ā.

Assuming that the claim holds, then we have the following as regards the relation

implied above:

• ∆3 = ∆′[θ′]

• Cī = (T1[θ′])[Cī′/D]

• T ′ = (T2[θ′])[Cī′/D] and T ′[θ] = (T2[θ′θ])[Cī′/D]

• U ′ = U [θ′] and U ′[θ] = U [θ′θ]

• W ′ = W [θ′] and W ′[θ] = W [θ′θ]

On the other hand, from inversion of (1), there are two cases to consider: if un(U0) for

some U0 such that ∆1 ` U0 <: U ′[θ], then Γ3 = Γ1, otherwise Γ3 = Γ1 \ o. In both cases,

notice that the difference between Γ1 and Γ3 depends on the linear/unrestricted nature of

type U ′ in the same way as Γ depends on type U (ii). Moreover, from this and (2), notice

that the type of r1 goes unchanged from Γ1 to Γ3.

Let ∆′1 = ∆1,Γ
′
1 = Γ1, Γ′2 = Γ2 and r2 = r1. To make the claim concrete, we show

that ∆1; Γ1 ` (h1 ∗ r1, t
′[o/x]) : T a Γ2 ∗ r1, which follows by a number of steps.

First, by (2) and Lemma 4.13 (Agreement of Judgements), ∆1 ` Cī : ?. From this,

(4) and Lemma 4.15 (Class/mtype Relation), obtain ∆1 ` V [θ′][Cī′/D] : ? which implies

∆1 ` ∆ : θ′. Use this together with (5) and Lemma 4.11 (Substitution Composition)

to get ∆1 ` ∆∆3 : θ′θ. Then, by Lemma 4.16 (Instantiation) using the second premise

of R-SELFCALL, the judgement ∆1 ` Cī : ?, (4) and (5), obtain

(8) ∆1;x : U ′[θ], this : fields(Cī)∗this ` t′ : W ′[θ] a ∆2; Γ[θ′θ], this : fields(Cj̄)∗this

with ∆2 ` fields(Cj̄) <: T ′[θ]. Now, apply Lemma 4.8 (Substitution for Objects) us-

ing (1) and (8) to get

(9) ∆1; Γ1 ∗ r1 ` t′[o/x] : W ′[θ] a ∆2; Γ3{r1 ←[fields(Cj̄)} ∗ r1

Conclude by applying rule T-STATE to (a), (b), (c) and the result of T-SUB with (7)

and (9).

76 CHAPTER 4. TYPE SOUNDNESS

Case R-CALL. Then,

t = f.m(o)

h(r1).f.class = C

mbody(m,C) = λx.t′

S2 = (h1 ∗ r1.f , return t′[o/x])

As in the previous case, notice a number of facts that help us build the final state

typing. Let B be the first superclass of C where method m is defined. The assump-

tion on well-formed programs (` P) implies that method m appears in the declaration

of B. Hence, `B m(x) = t′, which is necessarily the conclusion of T-METHOD whose

premises are:

(i) class B : ∆ extends {. . . ,m : Π∆′.(T1 T2 × U → W), . . .} is { }

(ii) ∆,∆′;x : U, this : fields(T1) ∗ this ` t′ : W a ∆′′; Γ, this : B[F ′] ∗ this

(iii) ∆′′ ` B[F ′] <: fields(T2)

(iv) x : U ∈ Γ⇒ un(U)

(v) m 6= init

Let D be the class of the current object. Without loss of generality, let h1 = (h, r1 =

D{f1 = o1, . . . , fn = on}), with n ≥ 1, and let f = fn, hence h1(r1).f = on. Then,

by (c) and the premises of rule T-HEAP,

(1) ∆1; Γ ` h

(2) ∆1; Γ ∗ r1 ` o1 . . . on−1 : F (f1) . . . F (fn−1) a ∆1; Γ′ ∗ r1

(3) ∆1; Γ′ ∗ r1 ` on : F (f) a ∆1; Γ1 ∗ r1

(4) Γ1 = Γ′′, r1 : D[F]

By inversion of (d),

(5) ∆1; Γ1 ∗ r1 ` o : U ′[θ] a ∆1; Γ3 ∗ r1

(6) ∆1; Γ3 ` r1.f : T ′ a ∆2

(7) mtype(m,T ′) = Π∆3.(T
′ T ′′ × U ′ → W ′)

(8) ∆2 ` ∆3 : θ

4.5. SUBJECT REDUCTION 77

(9) ∆2; Γ2 ` r1 : Cj̄ a ∆2

(10) Γ2 = Γ3{r1.f ← [T ′′[θ]}

(11) ∆2 ` W ′[θ] <: T

We have that T ′ is Cī by (7). Let ī = ī′̄i′′ and V = Π∆′.(T1 T2 × U → W).

We claim that (i) and (7) imply that mtype(m,T ′) = V [θ′][Cī′/B] for some θ′ such that

∆2 ` ∆ : θ′ with ∆ = ā : ī and θ′ = ī/ā.

Assuming that the claim holds, then we have the following as regards the relation

implied above:

• ∆3 = ∆′[θ′]

• T ′ = T1[θ′][Cī′/B] and T ′ = T1[θ′][Cī′/B]

• T ′′ = T2[θ′][Cī′/B] and T ′[θ] = T2[θ′θ][Cī′/B]

• U ′ = U [θ′] and U ′[θ] = U [θ′θ]

• W ′ = W [θ′] and W ′[θ] = W [θ′θ]

On the other hand, from inversion of (5), there are two cases to consider: if un(U0) for

some U0 such that ∆1 ` U0 <: U ′[θ] then Γ3 = Γ1, otherwise Γ3 = Γ1 \ o. In both cases,

notice that the difference between Γ1 and Γ3 depends on the linear/unrestricted nature of

type U ′ in the same way as Γ depends on type U (ii). From this and (6), conclude that the

type of r1 (and as a result of r1.f) goes unchanged from Γ1 to Γ3.

Let ∆′1 = ∆2 and Γ′2 = Γ2. To make the claim concrete, we show that ∆2; Γ′1 `
(h1 ∗ r1.f , return t′[o/x]) : T a ∆2; Γ2 ∗ r1 for some Γ′1, which follows by a number of

steps.

By (6) and Lemma 4.13 (Agreement of Judgements), ∆2 ` T ′ : ?. From this, (7) and

Lemma 4.15 (Class/mtype Relation) noticing (i), ∆2 ` V [θ′][Cī′/B] : ? which implies

∆2 ` ∆ : θ′. From this together with (8) and Lemma 4.11 (Substitution Composition),

obtain ∆2 ` ∆∆3 : θ′θ. Now, use the second premise of rule R-CALL, (7), (8) with

Lemma 4.16 (Instantiation) in order to get

(12) ∆2;x : U ′[θ], this : fields(T ′) ∗ this ` t′ : W ′[θ] a ∆2; Γ′, this : C[F ′′] ∗ this

(13) ∆2 ` C[F ′′] <: fields(T ′′[θ])

Then, by Lemma 4.17 (Opening) with (c), (6) and h1(r1).f = on,

(14) ∆2; Γ1{r1.f ←[fields(T ′)} ` h1

78 CHAPTER 4. TYPE SOUNDNESS

Using the fact that the type of r1.f goes unchanged from Γ1 to Γ3, build a derivation that

concludes as follows:

(15) ∆2; Γ1{r1.f ←[fields(T ′)} ∗ r1.f ` o : U ′[θ] a ∆2; Γ3{r1.f ← [fields(T ′)} ∗ r1.f

By (6), (12), (15) and Lemma 4.8 (Substitution for Objects),

(16) ∆2; Γ1{r1.f ←[fields(T ′)} ∗ r1.f ` t′[o/x] : W ′[θ] a ∆2; Γ3{r1.f ←[C[F ′′]} ∗
r1.f

Use (13) and (16) with rule T-RETURN in order to obtain

(17) ∆2; Γ1{r1.f ←[fields(T ′)} ∗ r1.f ` return t′[o/x] : W ′[θ] a ∆2; Γ2 ∗ r1

Let Γ′1 = Γ1{r1.f ←[fields(T ′)}. From dom(Γ1) ⊆ dom(h1) (b) and (14), it follows that

dom(Γ′1) ⊆ dom(h1). Combine this with (a), (11), (14), (17) and T-SUB, and conclude

by applying rule T-STATE.

Case R-RETURN. Then,

t = return o

r1 = r2.f

S2 = (h1 ∗ r2, o)

By inversion of (d),

(1) ∆1; Γ1 ∗ r2.f ` o : V a ∆1; Γ3 ∗ r2.f

(2) ∆1; Γ3 ` r2.f : C[F] a ∆1

(3) ∆1 ` C[F] <: fields(U)

(4) Γ2 = Γ3{r2.f ←[U}

(5) ∆1 ` V <: T

(6) ∆2 = ∆1

Let ∆′1 = ∆1 and Γ′2 = Γ2. Since the heap does not change, we build a derivation that

leads to ∆1; Γ′1 ` (h ∗ r2, o) : T a ∆1; Γ2 ∗ r2 for some Γ′1.

By inversion of (1), ∆1 ` Γ1, and there are two cases to consider: if un(V ′) for

some V ′ such that ∆1 ` V ′ <: V , then Γ3 = Γ1, otherwise Γ3 = Γ1 \ o for lin(V ′).

Moreover, from (2) notice that the type of r2.f goes unchanged from Γ1 to Γ3. Using

∆1; Γ1 ` h1 (c), (2), (3) and Lemma 4.18 (Closing), obtain ∆1; Γ1{r2.f ←[U} ` h1,

4.5. SUBJECT REDUCTION 79

and hence Γ′1 = Γ1{r2.f ←[U}. Then apply T-UNVAR or T-LINVAR as appropriate,

followed by T-SUB with (5), to get ∆1; Γ′1 ∗ r2 ` o : T a ∆1; Γ2 ∗ r2. Conclude from this

result with h1 complete (a), dom(Γ′1) ⊆ dom(h1) (b), the heap typing from the closing

lemma and rule T-STATE.

Case R-CASEk. Then,

t = case f of (Ck ⇒ tk)k∈1,2

h1(r1.f).class = Ck

S2 = (h1 ∗ r1, tk)k∈{1,2}

By inversion of (d),

(1) ∆1; Γ1{r1.f ←[(U1 + U2)} ` r1.f : (U1 + U2) a ∆1

(2) ∆1; Γ1 ∗ r1 ` tk : U a ∆2; Γ2 ∗ r1

(3) classof(Uk) = Ck

(4) C1 6= C2

(5) ∆1 ` U <: T

(6) r2 = r1

The reason why we have Γ1 as the initial object context in (2) is because we modify that

context in (1) by updating r1.f with the union type and replacing type Uk to which r1.f

is bound.

Let ∆′1 = ∆1 and Γ′1 = Γ1. Since the heap does not change, conclude ∆1; Γ1 `
(h1 ∗ r1, tk) : T a ∆2; Γ2 ∗ r1 directly by applying rules T-SUB and T-STATE using (a),

(b), (c), (2) and (5).

Case R-IFTRUE. Then,

t = if true then t1 else t2

S2 = (h1 ∗ r1, t1)

By inversion of (d),

(1) ∆1; Γ1 ∗ r1 ` true : Boolean p a ∆1; Γ1 ∗ r1

(2) ∆1, p; Γ1 ∗ r1 ` t1 : U a ∆2; Γ2 ∗ r2

(3) ∆1,¬p; Γ1 ∗ r1 ` t2 : U a ∆2; Γ2 ∗ r2

80 CHAPTER 4. TYPE SOUNDNESS

(4) ∆2 ` U <: T

Let ∆′1 = (∆1, p), and hence ∆1 ⊆ ∆′1, and let Γ′1 = Γ1 and Γ′2 = Γ2. Since the heap

does not change, we build a derivation that leads to ∆′1; Γ1 ` (h ∗ r1, t1) : T a ∆2; Γ2∗r1.

First, notice that the class declaration of Boolean implies un(Boolean p). From this

and Γ0 ⊆ Γ1, we have (true : Boolean true) ∈ Γ1. Also, from the assumption on well-

formed programs (` P), we have ` ∆′1. Use this and ∆1; Γ1 ` h1 (c) with Lemma 4.7

(Weakening for Index Contexts) to obtain ∆′1; Γ1 ` h1. Combine (2), (4) and rule T-SUB

to derive ∆′1; Γ1 ∗ r1 ` t1 : T a ∆2; Γ2 ∗ r2. Conclude from this, together with (a), (b)

and the heap typing from weakening, by applying rule T-STATE.

Case R-IFFALSE. Then,

t = if false then t1 else t2

S2 = (h1 ∗ r1, t2)

The proof is omitted, since it is analogous to the one of case R-IFTRUE, except that it

uses ∆′1 = (∆1,¬p) as the initial index context, and (3) in the premises of rule T-SUB.

Case R-WHILE. Then,

t = while true do t1

t2 = if true then (t1; while true do t1) else top

S2 = (h1 ∗ r1, t2)

By inversion of (d),

(1) ∆1; Γ1 ∗ r1 ` true : Boolean p a ∆1; Γ1 ∗ r1

(2) ∆1, p; Γ1 ∗ r1 ` t1 : T a ∆1; Γ1 ∗ r1

(3) T = Top

(4) Γ2 = Γ1

(5) ∆2 = (∆1,¬p)

(6) r2 = r1

Let ∆′1 = ∆1,Γ
′
1 = Γ1 and Γ′2 = Γ′1. Since the heap does not change, we build a

derivation that leads to ∆1; Γ1 ` (h1 ∗ r1, t2) : T a ∆2; Γ1 ∗ r1.

Notice that the class declaration of Top implies un(Top). From this and Γ0 ⊆ Γ1,

we have (top : Top) ∈ Γ1. From the assumption on well-formed programs (` P), we

4.6. PROGRESS 81

have ` ∆2. By inversion of (1), ∆1 ` Γ1 and then by Lemma 4.7 (Weakening for Index

Contexts) obtain ∆2 ` Γ1. Use this with rule T-UNVAR to get ∆2; Γ1 ∗ r1 ` top : Top a
∆2; Γ1 ∗ r1. Combine with (1), (2), (d) and rules T-SEQ and T-IF, and conclude from this

result with (a), (b) and (c) by applying rule T-STATE.

4.6 Progress

Towards type soundness, we show progress by proving that reduction never gets stuck on

well-formed DOL programs. Although simpler than subject reduction, the progress result

states crucial properties about locations in the heap.

Theorem 4.23 (Progress). Suppose that P is a well-formed program (` P). In this

context, let Γ0 ⊆ Γ1 and h0 ⊆ h1.

1. If ∆1; Γ1 ` (h1 ∗ r1, t1) : T a ∆2; Γ2 ∗ r2, then t1 is an object reference or

(h1 ∗ r1, t1) −→ (h2 ∗ r2, t2).

2. If ∆1; Γ1 ` (h1 ∗ r, t̄) : T̄ a ∆2; Γ2 ∗ r, then (h1 ∗ r, t̄) −→ (h2 ∗ r, t̄′).

Proof. By mutual induction on t and t̄. For the cases that fall in part 1, notice that the

hypothesis ∆1; Γ1 ` (h1 ∗ r1, t1) : T a ∆2; Γ2 ∗ r2 is necessarily the conclusion of rule

T-STATE, which implies the following premises:

(a) h1 complete

(b) dom(Γ1) ⊆ dom(h1)

(c) ∆1; Γ1 ` h1

(d) ∆1; Γ1 ∗ r1 ` t1 : T a ∆2; Γ2 ∗ r2

To prove some of the cases, we will refer to the above hypothesis and apply the appropriate

clause of Lemma 4.4 (Inversion of the Term Typing Relation) on (d).

For the inductive case, if t1 = E [t3] with t3 6= o and E 6= [], use (d) and Lemma 4.19

(Subterm Typing) to obtain ∆1; Γ1 ∗ r1 ` t3 : U a ∆3; Γ3 ∗ r3. Combine with (a), (b), (c)

and rule T-STATE to get ∆1; Γ1 ` (h1 ∗ r1, t3) : U a ∆3; Γ3 ∗ r3. Then by the induction

hypothesis, (h1 ∗ r1, t3) −→ (h2 ∗ r2, t2). Conclude by applying rule R-CONTEXT.

Case t1 = o. t1 is an object reference.

Case t1 = new C(). Then the hypothesis (` P) implies that `C init() = f̄ := new C̄(),

which is necessarily the conclusion of rule T-INIT. From this, we have

(1) mbody(init, C) = f̄ := new C̄()

82 CHAPTER 4. TYPE SOUNDNESS

By reading the premises of T-INIT, we also have fields(C.init) = C[F] and ε; ε ∗ r1 `
new C̄() : F (f̄) a ε; ε ∗ r1. By inversion of (d), ∆1 ` Γ1 and r2 = r1. Use Lemma 4.14

(Closed Class Families) to obtain

(2) ∆1; Γ1 ∗ r1 ` new C̄() : F (f̄) a ∆1; Γ1 ∗ r1

Apply rule T-MULTISTATE with (a), (b), (c) and (2) to get ∆1; Γ1 ` (h1 ∗ r1, new C̄()) :

F (f̄) a ∆1; Γ1 ∗ r1. Then by the induction hypothesis,

(3) (h1 ∗ r1, new C̄()) −→ (h3 ∗ r1, ō)

Since reduction rules generate fresh objects, let h2 = (h3, o = C{f̄ = ō}), and hence

o 6∈ dom(h3). From this together with (1) and (3), conclude by applying rule R-NEW.

Case t1 = (f := o). By inversion of (d),

(1) ∆1; Γ1 ∗ r1 ` o : U a ∆3; Γ3 ∗ r2

(2) ∆2; Γ3 ` r2 : C[F] a ∆2

(3) ∆2; Γ2 ` r2 : Cī a ∆2

(4) Γ2 = Γ3{r2.f ←[U}

Apply inversion again to (1) to obtain r2 = r1 and, depending on the linear/unrestricted

nature of U , either Γ3 = Γ1 or Γ3 = Γ1 \ o, and hence Γ3 ⊆ Γ1. By (2) and rule T-REF,

r2 ∈ dom(Γ3). It follows that r2 ∈ dom(Γ1). From dom(Γ1) ⊆ dom(h1) (b), we have

r2 ∈ dom(h1) (by transitivity). Notice that (3) and (4) imply that f is a field of the object

at r2. Then from r2 ∈ dom(h1) and h1 complete (a), h1(r2).f is defined. Conclude by

applying rule R-ASSIGN.

Case t1 = o; t2. Apply rule R-SEQ.

Case t1 = m(o). By inversion of (d),

(1) Γ1; ∆1 ∗ r1 ` o : U [θ] a Γ3; ∆3 ∗ r2

(2) ∆3; Γ3 ` r2 : Cī a ∆3

(3) ∆3; Γ2 ` r2 : Cj̄ a ∆2

(4) mtype(m,Cī) = Π∆.(Cī T2 × U → W)

(5) ∆3 ` ∆ : θ

(6) Γ2 = Γ2{r2 ←[T2[θ]}

4.6. PROGRESS 83

Apply inversion again to (1) to obtain r2 = r1 and, depending on the linear/unrestricted

nature of U , either Γ3 = Γ1 or Γ3 = Γ1 \ o, and hence Γ3 ⊆ Γ1. By (2) and rule T-

HIDE, r2 ∈ dom(Γ3). It follows that r2 ∈ dom(Γ1). From dom(Γ1) ⊆ dom(h1) (b),

r2 ∈ dom(h1) (by transitivity). On the other hand, notice that (4) and a well-formed

program (` P) imply that method m appears in the declaration of either C or some

superclass of C. Let D be the class where the method is defined such that `D m(x) = t

for a parameter x and a method body t, and hence mbody(m,C) = λx.t. From this and

h1(r2).class = C, conclude by applying rule R-SELFCALL.

Case t1 = f.m(o). By inversion of (d),

(1) Γ1; ∆1 ∗ r1 ` o : U [θ] a Γ3; ∆2 ∗ r3

(2) Γ3; ∆3 ` r3.f : T1 a ∆2

(3) ∆2; Γ2 ` r3 : Cj̄ a ∆2

(4) mtype(m,T1) = Π∆.(T1 T2 × U → W)

(5) ∆3 ` ∆ : θ

(6) Γ2 = Γ2{r3.f ← [T2[θ]}

For the first part, proceed as in case (t1 = (f := o)): apply inversion to (1) to obtain

r3 = r1 and Γ3 ⊆ Γ1. Notice that (2) is derived by rule T-FIELD followed by as many

applications of rule T-UNPACK as needed, which implies that r3 ∈ dom(Γ1). Then, from

h1 complete (a) and dom(Γ1) ⊆ dom(h1) (b), we have that h(r3.f) is defined. For the

second part, proceed as in case (t1 = m(o)): notice that type T1 must be of the form

Cī by (4), and this together with a well-formed program (` P) imply that method m

appears in the declaration of either C or some superclass of C. Let D be the class where

the method is defined such that such that `D m(x) = t for parameter x and a method

body t, and hence mbody(m,C) = λx.t. Conclude from this and h1(r3.f).class = C by

applying rule R-CALL with r2 = r3.f and r3 = r1.

Case t1 = return o. By inversion of (d),

(1) ∆1; Γ1 ∗ r1 ` o : T a ∆2; Γ3 ∗ r2.f

(2) ∆2; Γ3 ` r2.f : C[F] a ∆2

(3) ∆2 ` C[F] <: fields(U)

(4) Γ2 = Γ3{r2.f ← [U}

84 CHAPTER 4. TYPE SOUNDNESS

Apply inversion to (1) to obtain r2.f = r1 and, depending on the linear/unrestricted

nature of U , either Γ3 = Γ1 or Γ3 = Γ1 \ o, and hence Γ3 ⊆ Γ1. By (2) and the derivation

of rule T-FIELD, r2 ∈ dom(Γ3), and hence r2 ∈ dom(Γ1). From h1 complete (a) and

dom(Γ1) ⊆ dom(h1) (b), we have that r2.f ∈ dom(h1). Conclude by applying rule

R-RETURN.

Case t1 = case f of (Ck ⇒ tk)k∈1,2. By inversion of (d),

(1) ∆1; Γ1 ` r1.f : (U1 + U2) a ∆3

(2) classof(Uk) = Ck

(3) ∆3; Γ1{r1.f ←[Uk} ∗ r1 ` tk : T a ∆2; Γ2 ∗ r1

Notice that (1) is derived by rule T-FIELD, followed by as many applications as needed of

rule T-UNPACK. From this derivation, r1 ∈ dom(Γ1). Then by dom(Γ1) ⊆ dom(h1) (a),

h(r1) is defined. From h1 complete (a) and the fact that f is a field of the object at r1,

h(r1.f) is also defined. On the other hand, from (2) we have that h1(r1.f).class = Ck.

Conclude by applying rule R-CASEk.

Case t1 = if o then t3 else t4. By inversion of (d), ∆1; Γ1 ∗ r1 ` o : Boolean p a ∆3; Γ3 ∗
r2. Apply inversion again to obtain r2 = r1 and, depending on the unrestricted/linear

nature of Boolean p, either Γ3 = Γ1 or Γ3 = Γ1 \ o. However, from the Boolean class

declaration, we have that un(Boolean p), and therefore Γ3 = Γ1. Also, use Γ0 ⊆ Γ1

and the fact that the predefined Boolean does not declare a constructor to conclude that

(false : Boolean false, true : Boolean true) ∈ dom(Γ1) are the only two instances of

Boolean, and hence o must be either false or true. Similarly, from (false, true) ∈ dom(h0)

and h0 ⊆ h1, we also have that h1(o) is defined. Conclude by using ∆1 |= p to decide

whether to apply rule R-IFTRUE or R-IFFALSE.

Case t1 = while o do t2. Apply rule R-WHILE.

Case t̄ = ε. Apply rule R-EMPTY.

Case t̄ = new C()new C̄() with new C̄() 6= ε. Let T̄ = T ′T̄ ′. Notice that the hypoth-

esis is necessarily the conclusion of rule T-MULTISTATE, which implies the following

premises:

(1) h1 complete

(2) dom(Γ1) ⊆ dom(h1)

(3) ∆1; Γ1 ` h1

(4) ∆1; Γ1 ∗ r ` new C()new C̄() : T ′T̄ ′ a ∆2; Γ2 ∗ r

4.6. PROGRESS 85

Then notice that (4) is necessarily the conclusion of rule T-MULTI whose premises are:

(5) ∆1; Γ1 ∗ r ` new C() : T ′ a ∆3; Γ3 ∗ r

(6) ∆3; Γ3 ∗ r ` new C̄() : T̄ ′ a ∆2; Γ2 ∗ r

Apply inversion to (5) to obtain ∆3 = ∆1 and Γ3 = Γ1. Then, combine (1), (2), (3) and

(5) and apply rule T-STATE to get

(7) ∆1; Γ1 ` (h1 ∗ r, new C()) : T ′ a ∆1; Γ1 ∗ r

By the induction hypothesis,

(8) (h1 ∗ r, new C()) −→ (h3 ∗ r, o)

From the hypothesis (` P), (7), (8) and Lemma 4.21 (Subject Reduction for Object

Initialisation), ∆1; Γ′1 ` (h3 ∗ r, o) : T ′ a ∆1; Γ′2 ∗ r whose premises are

(9) h1 complete

(10) dom(Γ′1) ∈ dom(h3)

(11) ∆1; Γ′1 ` h3

(12) ∆1; Γ′1 ∗ r ` o : T ′ a ∆1; Γ′2 ∗ r

By inversion of (12), we have ∆1 ` Γ′1. From this and (6), use Lemma 4.14 (Closed Class

Families) to obtain ∆1; Γ′1 ∗ r ` new C̄() : T̄ ′ a ∆1; Γ′1 ∗ r. Combine this judgement with

(9), (10), (11) and rule T-MULTISTATE to get ∆1; Γ′1 ` (h3 ∗ r, new C̄()) : T̄ a ∆1; Γ′1∗r.
Then by the induction hypothesis,

(13) (h3 ∗ r, new C̄()) −→ (h2 ∗ r, ō)

From (8) and (13), conclude by applying rule R-MULTINEW.

Chapter 5

Algorithmic Typechecking

Chapter 3 formalised a declarative type system for DOL’s core language. The definitions

presented there are designed to show how typing should behave and to simplify proofs,

but are not immediately suitable for implementation. To define the algorithmic system,

we modify the rules that require guessing quantifier instantiation. For this, we build on

the techniques developed by Dunfield [2007], Dunfield and Krishnaswami [2013, 2016],

applying them to a much simpler setting, that of our restricted language of indices. The

basic idea is to defer quantifier instantiation by relying on new judgements, such as index

variable instantiation and index equivalence, which will find the appropriate solutions and

propagate the increased knowledge using final index contexts. We also apply bidirectional

typechecking [Pierce and Turner, 2000] in order to distinguish rules that synthesize types

from those that check terms against types already known. The result is a simple yet precise

algorithm from which it is straightforward to read off an implementation.

Chapter Outline. This chapter is structured as follows:

• Section 5.1 presents the algorithmic type system.

• Section 5.2 proves that the algorithmic system is sound and complete with respect

to the declarative system.

• Section 5.3 briefly describes the prototype, which is a direct implementation of the

algorithmic typing rules.

5.1 Algorithmic Type System

We develop the algorithmic system in two steps. The first step is to introduce an existen-

tial index variable (written â with the hat in the style of Dunfield [2007], Dunfield and

87

88 CHAPTER 5. ALGORITHMIC TYPECHECKING

Krishnaswami [2013, 2016]) into the initial index context whenever there is a need to

make a guess at the appropriate index term i. The oracular rules in the declarative system

are S-ΠL and S-ΣR, T-HIDE, T-SELFCALL, T-CALL and T-MTYPE. The corresponding

algorithmic rules are defined by judgements that take an initial index context and yield a

final index context, possibly augmented with knowledge about what index terms have to

be. Instead of guessing, the algorithmic system adds judgements to instantiate existential

index variables and equate index terms. A final index context in the algorithmic system

also serves to propagate increased information, namely that â is equal to a specific i.

The second step is to apply bidirectional typing, a technique that easily supports sub-

typing and index refinements. In fact, bidirectional typechecking has become popular for

specifying typecheckers in object-oriented languages such as C# [Bierman et al., 2007]

and Scala [Odersky et al., 2001], languages with indexed and refinement types [Xi, 1998,

Dunfield, 2007, Knowles et al., 2007, Lovas and Pfenning, 2008, Bierman et al., 2010],

and languages with higher-rank polymorphism and indexed types [Jones et al., 2007,

Dunfield and Krishnaswami, 2013, 2016]. We modify the typing rules for terms by dis-

tinguishing the rules which synthesize types from those that check terms against types

already known.

In the process, we also eliminate the nondeterminism associated with the subtyping

rules and the typing rules for paths. We arrive at an algorithmic type system for DOL

that consists of type formation rules, index instantiation and equivalence rules, subtyping

rules, and typing rules for paths and terms. The rest of this section is devoted to describing

the technical details of this system.

Syntax. The algorithmic system uses the syntax and meta-variables of the declarative

system (Figures 3.1 and 3.2).

Existential Index Variables. Index contexts in the declarative system may contain in-

dex variables a, regarded as universal quantifiers, and propositions p. However, index

contexts in the algorithmic system need to include existential index variables, denoted by

the meta-variable â introduced earlier, to be refined as typechecking proceeds. Rather

than defining a distinct syntactic category, we again opt to simplify by taking existential

index variables â to be a subset of the index variable names in ∆.

Index Contexts. Index contexts in the algorithmic system extend index contexts in the

declarative system as follows:

∆ ::= . . . | â : I
.
= i

5.1. ALGORITHMIC TYPE SYSTEM 89

In addition to unsolved existential index variable declarations â : I , index contexts in the

algorithmic system may also contain solved existential index variable declarations given

above. As index contexts in the declarative system, index contexts in the algorithmic

system are ordered sequences. For example, the index context in the algorithmic system

(∆, â : I
.
= i) is said to be well-formed if â 6∈ FV(∆) and FV(I) ∪ FV(i) ∈ ∆.

Constraint-based Typechecking. In the declarative system, we rely on a set of rules

that check index type formation, subtyping, typing and substitution (Figures 3.3–3.6),

which use an external constraint solver only to check if propositions hold. In the algorith-

mic system, most of the work in the index language is handled by the external solver. We

add another semantically defined relation of the form

∆ |= i : I

that reads “i : I holds under the assumptions in ∆”. The solver will reject, for example,

unknown identifiers and terms such as (a > b)+1 under a context (b : integer). Of course,

the typechecker itself still has to handle existential index variables (as we will see later).

For example, we may want the constraint â : positive |= â
.
= 1 to hold, meaning that we

may want to instantiate the existential index variable â with the value 1. Although some

constraint solvers provide (limited) support for quantifiers, undecidability may follow.

As a result, we currently only give quantifier-free formulas to the external solver, so that

typechecking remains decidable.

5.1.1 Algorithmic Type Formation

The rules for well-formed types in the declarative system (Figure 3.7) make use of the

index formation relation in rule WF-? and of the index typing relation in rule K-APP.

We thus need to define algorithmic versions that instead only make use of |= judgements.

This is done in Figure 5.1.

5.1.2 Quantifier Instantiation

We provide a rewrite system for integer equations in order to isolate existential index

variables. The rules are given in Figure 5.2. We also define a set of auxiliary judgements

that instantiate existential index variables and equate index terms. To instantiate unsolved

existential index variables, we define a judgement of the form

∆1 ` â := i a ∆2

90 CHAPTER 5. ALGORITHMIC TYPECHECKING

∆ . K Under context ∆, kind K is alg. well-formed

|= ∆
(AWF-?)

∆ . ?

∆, a : I ` K
(AWF-Π)

∆ . Πa : I.K

∆ . T : K Under context ∆, type T has alg. kind K

class C : (ā : Ī) extends { } is { } ∆ . Πā : Ī .?
(AK-CLASS)

∆ . C : Πā : Ī .?

∆ . ? (AK-TOP)
∆ . Top : ?

∆ . Cī : Πa : I.K ∆ |= i : I
(AK-APP)

∆ . Cīi : K[i/a]

∆, a : I . T : ?
(AK-Π)

∆ . Πa : I.T : ?
∆, a : I . T : ?

(AK-Σ)
∆ . Σa : I.T : ?

∆ . T : ? ∆ . U : ? (AK-+)
∆ . T + U : ?

∆ . T : ? ∆ . U : ? (AK-×)
∆ . T × U : ?

∆ . T̄ : ? (AK-RECORD)
∆ . C[{f̄ : T̄}}] : ?

Figure 5.1: Algorithmic type formation rules

(i1 + i2
.
= j)

rw−→ (i1
.
= j − i2) if â ∈ FV(i1)

(i1 + i2
.
= j)

rw−→ (i2
.
= j − i1) if â ∈ FV(i2)

(i1 − i2
.
= j)

rw−→ (i1
.
= j + i2) if â ∈ FV(i1)

(i1 − i2
.
= j)

rw−→ (i2
.
= i1 − j) if â ∈ FV(i2)

Figure 5.2: Rewrite rules to isolate an existential index variable â appearing on the left-
hand side of an equation (rules for â appearing on the right-hand side are omitted)

To equate index terms and propositions, we define the following three judgements:

∆1 ` i ≡ j a ∆2 and ∆1 ` p1 ≡ p2 a ∆2 and ∆1 ` ī ≡ j̄ a ∆2

The rules for these judgements are given in Figure 5.3, and below we provide additional

definitions used by them.

Definition 5.1 (Index Context Update). (∆1, â : I,∆2){â←[i} , ∆1, â : I
.
= i,∆2.

Definition 5.2. The set of unsolved existential index variables in a context ∆, notation

5.1. ALGORITHMIC TYPE SYSTEM 91

∆1 ` â := i a ∆2
Under initial context ∆1,
instantiate â such that â .

= i, with final context ∆2

i 6= b̂ ∆1 |= i : I
(Q-SOLVE)

∆1, â : I,∆2 ` â := i a ∆1, â : I
.
= i,∆2

∆1, â : I,∆2 |= b̂ : I b̂ ∈ unsolved(∆1 ∪∆2)
(Q-SOLVEEX)

∆1, â : I,∆2 ` â := b̂ a (∆1, â : I,∆2){b̂←[â}

∆1 ` i ≡ j a ∆2
Under initial context ∆1,
index term i is equivalent to j, with final context ∆2

FV(i, j) 6∈ unsolved(∆) ∆ |= i
.
= j

(EQ-ASSERT)
∆ ` i ≡ j a ∆

â ∈ FV(i1, i2) ∩ unsolved(∆1)

(i1 ⊕ i2
.
= j)

rw−→ (j1
.
= j2) ∆1 ` j1 ≡ j2 a ∆2 (EQ-⊕L)

∆1 ` i1 ⊕ i2 ≡ j a ∆2

â ∈ FV(i1, i2) ∩ unsolved(∆1)

(j
.
= i1 ⊕ i2)

rw−→ (j1
.
= j2) ∆1 ` j1 ≡ j2 a ∆2 (EQ-⊕R)

∆1 ` j ≡ i1 ⊕ i2 a ∆2

â 6∈ FV(i) ∆1 ` â := i a ∆2 (EQ-INSTL)
∆1 ` â ≡ i a ∆2

i 6= b̂ â 6∈ FV(i) ∆1 ` â := i a ∆2 (EQ-INSTR)
∆1 ` i ≡ â a ∆2

∆1 ` p1 ≡ p2 a ∆2
Under initial context ∆1,
proposition p1 is equivalent to p2, with final context ∆2

∆1 ` p1 ≡ p3 a ∆3 ∆3 ` p2 ≡ p4 a ∆4 (EQ-4)
∆1 ` p1 4 p2 ≡ p3 4 p4 a ∆4

∆1 ` p1 ≡ p3 a ∆3 ∆3 ` p2 ≡ p4 a ∆4 (EQ-7)
∆1 ` p1 7 p2 ≡ p3 7 p4 a ∆4

∆1 ` ī ≡ j̄ a ∆2
Under initial context ∆1,
index term sequence ī is equivalent to j̄, with final context ∆2

(EQ-ε)
∆ ` ε ≡ ε a ∆

∆1 ` i ≡ j a ∆2 ∆2 ` ī ≡ j̄ a ∆3 (EQ-MULTI)
∆1 ` īi ≡ jj̄ a ∆3

Figure 5.3: Index instantiation and equality rules

92 CHAPTER 5. ALGORITHMIC TYPECHECKING

unsolved(∆), can be inductively defined as follows:

unsolved(ε) = {}
unsolved(∆, a : I) = unsolved(∆)

unsolved(∆, â : I) = unsolved(∆) ∪ {â}
unsolved(∆, â : I

.
= i) = unsolved(∆)

unsolved(∆, p) = unsolved(∆)

Rule Q-SOLVE sets â to i provided that i : I follows from the assumptions in ∆1,

and i is not another existential index variable. On the other hand, rule Q-SOLVEEX is

applied when the right-side index term is an existential index variable b̂. We cannot set

â to b̂ because b̂ may not well-formed under ∆1. Instead, we set b̂ to â as long as both

existential index variables have the same type.

The other rules compare index terms. Rule EQ-ASSERT checks validity of a constraint

that has no unsolved existential index variables. Rule EQ-⊕L uses the rewrite system for

equations (Figure 5.2) to isolate an existential index variable appearing on the left-hand

side. We omit the corresponding equations for the right rule, since these are similar yet

reversed. The instantiation of existential index variables occurs in the rightmost premise

of the two symmetric rules EQ-INSTL and EQ-INSTR.

Example. Under an initial index context ∆1 = (â : positive), where positive abbreviates

{a : integer | a > 0}, take the conclusion â (â + 1) ≡ 1 2, and a final context ∆2 = (â :

positive
.
= 1). We omit the free variable premises in the example below. The derivation

is as follows:

∆1 |= 1 : positive
(Q-SOLVE)

∆1 ` â := 1 a ∆2 (EQ-INSTL)
∆1 ` â ≡ 1 a ∆2

∆2 |= (â+ 1)
.
= 2

(EQ-ASSERT)
∆2 ` (â+ 1) ≡ 2 a ∆2 (EQ-MULTI)

∆1 ` â (â+ 1) ≡ 1 2 a ∆2

5.1.3 Algorithmic Subtyping

The subtyping rules in the declarative system (Figure 3.8) cannot be implemented di-

rectly for two main reasons. The first reason is the already mentioned index term i in

the premises of rules S-ΠL and S-ΣR which is the result of guessing. The second rea-

son is the nondeterminism introduced by rule S-TRANS and by some rules that are not

syntax-directed. For example, when both types are quantifiers or unions, more than one

5.1. ALGORITHMIC TYPE SYSTEM 93

∆1 ` T <: U a ∆2
Under initial context ∆1,
type T is a subtype of U , with final context ∆2

class C : (ā : Ī) extends T{ } is { } ∆1 ` T [̄i/ā] <: Dj̄ a ∆2 C 6= D
(AS-SUPER)

∆1 ` Cī <: Dj̄ a ∆2

∆ . T ◦ : ? (AS-TOP)
∆ ` T ◦ <: Top a ∆

∆1 ` ī ≡ j̄ a ∆2 (AS-APP)
∆1 ` Cī <: Cj̄ a ∆2

∆1, â : I ` U [â/a] <: T ◦ a ∆2 (AS-ΠL)
∆1 ` Πa : I.U <: T ◦ a ∆2

∆1, a : I ` T <: U a ∆2 (AS-ΠR)
∆1 ` T <: Πa : I.U a ∆2

∆1, a : I ` T <: U a ∆2 (AS-ΣL)
∆1 ` Σa : I.T <: U a ∆2

∆1, â : I ` T ◦ <: U [â/a] a ∆2 (AS-ΣR)
∆1 ` T ◦ <: Σa : I.U a ∆2

∆1 ` T1 <: U a ∆2 ∆1 ` T2 <: U a ∆2 (AS-+L)
∆1 ` (T1 + T2) <: U a ∆2

∆1 ` T ◦ <: Uk a ∆2 (AS-+Rk)
∆1 ` T ◦ <: (U1 + U2) a ∆2

∆1 ` T1 <: U1 a ∆2 ∆1 ` T2 <: U2 a ∆2 (AS-×)
∆1 ` (T1 × T2) <: (U1 × U2) a ∆2

∆1 ` T1 <: U1 a ∆2 . . . ∆n ` Tn <: Un a ∆n+1 (AS-RECORD)
∆1 ` C[{f1 : T1, . . . , fn : Tn}] <: C[{f1 : U1, . . . , fn : Un}] a ∆n+1

Figure 5.4: Algorithmic subtyping rules. T ◦ means that T is not a type Π,Σ, or +. In
rules AS-ΠL and AS-ΣR, index variable â is fresh.

rule can be tried. Specifically, in the judgement ∆ ` Πa : I.Ca <: Σb : J.Db we can

choose to instantiate a or b using rules S-ΠL or S-ΣR. If we choose the former, then we

have to prove ∆ ` Ci <: Σb : J.Db where b may depend on a but not the opposite. If we

choose the latter, then we must prove ∆ ` Πa : I.Ca <: Di where the dependencies are

reversed [Dunfield and Krishnaswami, 2016].

The algorithmic subtyping rules in Figure 5.4 use judgements of the form

∆1 ` T <: U a ∆2

where the final index context ∆2 may carry information about solved existential index

variables, obtained along the derivation from the rules presented earlier (Figure 5.3).

To make the system deterministic, we drop rule S-TRANS. However, we cannot elim-

inate transitivity completely, so we allow it along the hierarchy of classes in rule AS-

SUPER. We also make sure that at most one rule applies, forming an algorithm when

rules are read upwards. We write T ◦ to denote a type that is not a Π,Σ, or +. For exam-

ple, the only rule deriving a judgement with a Σ as a supertype is AS-ΣR.

Rule AS-SUPER has a different final context that comes from its subtyping premise.

94 CHAPTER 5. ALGORITHMIC TYPECHECKING

∆ . Γ Under context ∆, context Γ is alg. well-formed
|= ∆

(AWF-EMPTYΓ)
∆ . ε

∆ . Γ x 6∈ dom(Γ) ∆ . T : K
(AWF-Γ)

∆ . Γ, x : T

Figure 5.5: Algorithmic formation rules for object contexts

∆1; Γ ` r ↑ T a ∆2

∆1; Γ ` r ↑h T a ∆2
Under contexts ∆1; Γ, path r synthesizes type T , with final context ∆2

∆1 . Γ U = Σ∆2.T (AT-REF)
∆1; Γ, this : U ` this ↑ T a ∆1,∆2

∆1; Γ ` this ↑ C[F] a ∆1 F (f) = Σ∆2.T (AT-FIELD)
∆1; Γ ` this.f ↑ T a ∆1,∆2

∆1; Γ ` this ↑ C[F] a ∆1 class C : (ā : Ī) extends { } is { }
∆1, ¯̂a : Ī ` C[F] <: fields(C)[¯̂a/ā] a ∆2

¯̂a fresh
(AT-HIDE)

∆1; Γ ` this ↑h C ¯̂a a ∆2

Figure 5.6: Type synthesis rules for paths

Rule AS-TOP does not involve existential index variables, hence uses the same initial and

final contexts. The key rule is AS-APP whose premise ∆1 ` ī ≡ j̄ a ∆2 solves existential

index variables. For example, Ci <: Câ will lead to â : I
.
= i being an entry in the final

index context ∆2 (provided â : I is declared in ∆1 and â 6∈ FV(i) and i : I follows from

the assumptions in ∆1).

The two rules AS-ΠL and AS-ΣR do not make a guess at the appropriate index

term i, unlike the corresponding declarative rules. Instead, they add a fresh existential

index variable â to the initial context of their premise, replacing awith â in the appropriate

type, so that a solution will be added to the final context. Rules AS-ΠR and AS-ΣL are

similar to the ones of the declarative system, except for the final index contexts, and so are

rules AS-+L and AS-×. Rule AS-+Rk is applied when a union U1 + U2 is a supertype,

provided the subtype is not a Π,Σ, or +. The rule checks first against U1 and, if that fails,

it checks against U2. Rule AS-RECORD compares field typings by taking into account

final contexts that may contain solutions to existential index variables.

5.1.4 Bidirectional Typechecking

When checking a path, we propagate type information using a judgement of the form

∆1; Γ ` r ↑ T a ∆2

5.1. ALGORITHMIC TYPE SYSTEM 95

where ↑ is meant to denote type synthesis. In the algorithmic system, paths r take the form

of either the current object this or a field this.f . The rules are given in Figure 5.6. Rules

AT-REF and AT-FIELD unpack a path if its synthesized type begins with an existential

quantifier (cf. Figure 3.11). Rule AT-HIDE, instead of replacing the class quantifiers ā

with guessed ī of the same type, replaces them with fresh existential index variables ¯̂a,

which are added to the initial context of the subtyping premise. The rule returns the

top-level type C ¯̂a together with a final context that contains solutions to ¯̂a.

As mentioned, in the bidirectional typechecking algorithm [Pierce and Turner, 2000],

we alternate between synthesizing types and checking terms against types already known.

Bidirectional typechecking in DOL is formalised by replacing the typing judgement of the

form

∆1; Γ1 ∗ r1 ` t : T a ∆2; Γ2 ∗ r2

with the following two judgements:

∆1; Γ1 ` t ↑ T a ∆2; Γ2 synthesizing

∆1; Γ1 ` t ↓ T a ∆2; Γ2 checking

The intuition is that when a rule is applied the typechecker’s “direction” is either towards

the root of the syntax tree (synthesis) as it traverses the program, or down towards the

leaves (checking), propagating down a known type T to check a term t against it. In

practice, however, the difference is between which part of the judgements are inputs and

outputs. During synthesis, the inputs are ∆1; Γ1 and t, and so the output is T as well as

the final contexts ∆2; Γ2, whereas during checking we already know T and make sure the

type of t is a subtype of T . While a path r may represent this or this.f , the currently active

object this does not change. Therefore, in the algorithmic judgements we omit r1 and r2,

which are required for typing runtime terms and proving type soundness, but never for

typechecking a program.

Many of the rules in Figure 5.7 follow the corresponding declarative versions (Fig-

ure 3.12), using the auxiliary functions and predicates (Figure 3.9), as well as the several

definitions given in Section 3.2.6. We define below an additional operation of composition

over contexts.

Definition 5.3 (Type Equivalence). Let ∆ . T : K and ∆ . U : K. We say that T and U

are equivalent types under ∆ if ∆ ` T <: U a and ∆ ` U <: T a .

Definition 5.4 (Context Composition). Context composition, denoted by (∆1; Γ1 ·∆2; Γ2),

with Γ1 = (Γ, this : C[f1 : T1, . . . , fn : Tn]) and Γ2 = (Γ, this : C[f1 : U1, . . . , fn : Un]),

96 CHAPTER 5. ALGORITHMIC TYPECHECKING

∆1; Γ1 ` t ↑ T a ∆2; Γ2
Under initial contexts ∆1; Γ1,
term t synthesizes type T , with final contexts ∆2; Γ2

∆1; Γ1 ` t ↓ T a ∆2; Γ2
Under initial contexts ∆1; Γ1,
term t checks against input type T , with final contexts ∆2; Γ2

∆ . Γ un(T)
(AT-UNVAR)

∆; Γ, x : T ` x ↑ T a ∆; Γ, x : T

∆ . Γ lin(T)
(AT-LINVAR)

∆; Γ, x : T ` x ↑ T a ∆; Γ

∆; Γ ` this ↑ C[F] a ∆ un(F (f))
(AT-UNFIELD)

∆; Γ ` f ↑ F (f) a ∆; Γ

∆ . Γ (AT-NEW)
∆; Γ ` new C() ↑ C.init a ∆; Γ

∆1; Γ1 ` t ↑ T a ∆2; Γ2

∆2; Γ2 ` this ↑ C[F] a ∆2 ∆2; Γ2{this.f ←[T} ` this ↑h Cī a ∆3 (AT-ASSIGN)
∆1; Γ1 ` f := t ↑ F (f) a ∆2; Γ2{this.f ←[T}

∆1; Γ1 ` t1 ↑ U a ∆2; Γ2 ∆2; Γ2 ` t2 ↑ T a ∆3; Γ3 un(U)
(AT-SEQ)

∆1; Γ1 ` t1; t2 ↑ T a ∆3; Γ3

∆1; Γ1 ` this ↑h Cī a ∆2 mtype(m,Cī) = Π(ā : Ī).(Cī T × U → W)

∆2, ¯̂a : Ī; Γ1 ` t ↓ U [¯̂a/ā] a ∆3; Γ2
¯̂a fresh

∆3; Γ2{this←[T [¯̂a/ā]} ` this ↑ Cj̄ a ∆4 (AT-SELFCALL)
∆1; Γ1 ` m(t) ↑ W [¯̂a/ā] a ∆4; Γ2{this←[fields(Cj̄)}

∆1; Γ1 ` this.f ↑ T1 a ∆2 mtype(m,T1) = Π(ā : Ī).(T1 T2 × U → W)

∆2, ¯̂a : Ī; Γ1 ` t ↓ U [¯̂a/ā] a ∆3; Γ2
¯̂a fresh

∆3; Γ2{this.f ←[T2[¯̂a/ā]} ` this ↑h Cī a ∆4 (AT-CALL)
∆1; Γ1 ` f.m(t) ↑ W [¯̂a/ā] a ∆3; Γ2{this.f ←[T2[¯̂a/ā]}

∆1; Γ1 ` this.f ↑ (U1 + U2) a ∆2 classof(Uk) = Ck

∆2; Γ1{this.f ←[Uk} ` tk ↑ Tk a ∆k+2; Γk+2 C1 6= C2 (AT-CASE)
∆1; Γ1 ` case f of (Ck ⇒ tk)k∈1,2 ↑ (T1 + T2) a (∆3; Γ3 ·∆4; Γ4)

∆1; Γ1 ` t ↑ Boolean p a ∆2; Γ2

∆2, p; Γ2 ` t1 ↑ T1 a ∆3, p,∆
′
3; Γ3 ∆2,¬p; Γ2 ` t2 ↑ T2 a ∆4,¬p,∆′4; Γ4 (AT-IF)

∆1; Γ1 ` if t then t1 else t2 ↑ (T1 + T2) a (∆3,∆
′
3; Γ3 ·∆4,∆

′
4; Γ4)

∆1; Γ1 ` t1 ↑ Boolean p a ∆2; Γ2 ∆2, p; Γ2 ` t2 ↓ Top a ∆2; Γ2 (AT-WHILE)
∆1; Γ1 ` while t1 do t2 ↓ Top a ∆2,¬p; Γ2

∆1; Γ1 ` t ↑ U a ∆2; Γ2 ∆2 ` U <: T a ∆3 (AT-SUB)
∆1; Γ1 ` t ↓ T a ∆3; Γ2

Figure 5.7: Type synthesis and type checking rules for terms

5.1. ALGORITHMIC TYPE SYSTEM 97

.C M Method M is alg. well-formed in class C

class C : ∆1 extends {. . . ,m : Π∆2.(T1 T2 × U → W), . . .} is { }
∆1,∆2;x : U, this : C[fields(T1)] ` t ↓ W a ∆3; Γ, this : C[F]

x : U ∈ Γ⇒ un(U) ∆3 ` C[F] <: fields(T2) a ∆4 m 6= init
(AT-METHOD)

.C m(x) = t

fields(C.init) = C[F] ε; ε ` new C̄() ↑ F (f̄) a ε; ε no cycles in C
(AT-INIT)

.C init() = f̄ := new C̄()

∆ .T l : U Member l has alg. type U with supertype T

∆ . U : ? (AT-FIELD)
∆ .T f : U

mtype(m,T) undefined class C : (ā : Ī) extends { } is { }
∆1 . Π∆2.(Cī× U ×W) : ? ∆1,∆2, ¯̂a : Ī ` C ¯̂a <: T2 a ∆3

¯̂a fresh
(AT-MTYPE)

∆1 .T m : Π∆2.(Cī T2 × U → W)

mtype(m,T) = Π∆′2.(T
′
1 T ′2 × U ′ → W ′)

∆1 ` Π∆2.(T1 × T2 × U ′ ×W) <: Π∆′2.(T
′
1 × T ′2 × U ×W ′) a ∆3 (AT-OVERRIDE)

∆1 `T m : Π∆2.(T1 T2 × U → W)

. L Class L is alg. well-formed

∆ . T : ? ∆ .T l̄ : T̄ .C M̄ (AT-CLASS)
. class C : ∆ extends T{l̄ : T̄} is {M̄}

. P Program P is alg. well-formed

. L1 Ln (AT-PROGRAM)
. L1 . . . Ln

Figure 5.8: Algorithmic typing rules for program formation

produces contexts ∆3; Γ3 where ∆3 = ∆1 ∪ ∆2 and Γ3 = (Γ, this : C[f1 : V1, . . . , fn :

Vn]) with Vk = Tk if Tk and Uk are equivalent types under ∆3, or Vk = (Tk + Uk) and

1 ≤ k ≤ n.

Rules AT-UNVAR and AT-LINVAR propagate the type from the assumption x : T ,

without generating any new index information, so the final index context in the conclu-

sion is the same as the initial index context. Rule AT-UNFIELD is analogous to the

corresponding declarative rule, using the same initial and final index context. Rules AT-

NEW and AT-SEQ also follow the declarative rules. Rule AT-ASSIGN is the same as in

the declarative system, except that it can safely discard the final index context from the

premise ∆2; Γ2{this.f ←[T} ` this ↑h Cī a ∆3 since the types used in the conclusion do

98 CHAPTER 5. ALGORITHMIC TYPECHECKING

not depend on any solutions in ∆3.

The two rules for method calls are more interesting. Rule AT-SELFCALL generates

fresh index variables ¯̂a : Ī , with Ī issued by the method signature, and adds them to the

initial index context of the premise that checks the type of the parameter. Its final context

may contain solutions to ¯̂a, which are then propagated to the remaining premise and the

conclusion, so that any dependencies in the output types will be solved in the final context

used in the conclusion. Rule AT-CALL is similar, except that, as AT-ASSIGN, discards

the final index context from the derivation of its premise that uses rule AT-HIDE.

In rule AT-CASE, the field synthesizes a union type, while the two branches synthesize

types T1 and T2. The entire term synthesizes their union (T1 + T2), and final contexts

are produced by composition of the final contexts of the branches. In rule AT-IF, the

condition synthesizes a Boolean type, while the final type and contexts are obtained as in

rule AT-CASE by composition at the meet-point. It is possible, however, that the context

composition gives a union type to a field that needs to have a type of the form Cī, for

example in order to call a method. A field that has been given an inappropriate union type

may be given a single type by joining the constraints issued by each type.

In rule AT-WHILE, the condition synthesizes a Boolean type and the body of the loop

checks against Top, while contexts are invariant. Finally, rule AT-SUB in the algorithmic

system states that a term checks against a type T if it synthesizes a subtype of T .

Figure 5.8 defines the algorithmic rules for program formation. Rule AT-MTYPE

does not guess index terms, but instead solves the fresh quantifiers in a type C ¯̂a along

the derivation of its subtyping premise. The other rules do not differ from those in the

declarative system, except for the use of the algorithmic index contexts.

5.2 Correctness of the Algorithmic System

We now prove that the algorithmic system is sound and complete with respect to the

declarative system. We build our exposition on Dunfield and Krishnaswami [2013, 2016]’s

proofs. For this, we require additional definitions of complete index contexts and of index

contexts, applied as substitutions, to index terms, types and contexts.

We can view a solved existential index declaration as a substitution for its solved

existential index variable. We therefore denote by i1[â : I
.
= i2] the capture-avoiding

substitution of i2 for the free occurrences of â in i1, defined inductively on the structure

of index terms. For example, b̂[â : I
.
= i] , i if b̂ = â, otherwise b̂[â : I

.
= i] , b̂; on the

other hand (i1 + i2)[â : I
.
= i3] , i1[â : I

.
= i3] + i2[â : I

.
= i3].

A single index substitution is extended pointwise to a context ∆ applied as a substitu-

5.2. CORRECTNESS OF THE ALGORITHMIC SYSTEM 99

tion to an index term by defining

i[ε] = i

i[â : I
.
= j,∆] = (i[â : I

.
= j])[∆]

i[â : I,∆] = i[∆]

i[a : I,∆] = i[∆]

i[p,∆] = i[∆]

Definition 5.5 (Complete Index Contexts). A complete index context, denoted by φ, is

an algorithmic index context such that for every existential index variable â in dom(φ),

φ(â) , â : I
.
= i.

Definition 5.6 (Index Context Substitution). The result of applying a complete context φ

as a substitution to a context ∆, denoted by ∆[φ], is inductively defined as follows:

ε[ε] = ε

∆[φ, â : I := i] =


∆′[φ] if ∆ = (∆′, â : I := i)

∆′[φ] if ∆ = (∆′, â : I)

∆[φ] otherwise

(∆, a : I)[φ, a : J] = ∆[φ], a : I[φ] if I[φ] = J [φ]

(∆, p)[φ] = ∆[φ], p[φ]

In all other cases, index context substitution is undefined.

Definition 5.7 (Index Context Extension). We say that an index context ∆2 extends some

index context ∆1 if dom(∆1) ⊆ dom(∆2) and ∆1[φ] = ∆2[φ] for some φ.

We can also apply a complete index context φ as a substitution to a well-formed index

context ∆ in order to obtain a declarative index context. Index context substitution works

by dropping all the existential index declarations in ∆ and applying φ to declarations of

the form a : I . It is defined if and only if φ extends ∆.

The application of an index context as a substitution to a (well-formed) type T , de-

noted by T [∆], is defined inductively on the structure of T , e.g. (Ci1 . . . in)[∆] ,

C(i1[∆]) . . . (in[∆]). Notice that the application of an index context as a substitution

to a type T also drops all the existential index variables in T ; the result is a type in the

declarative system. Similarly, the application of φ to an object context Γ, denoted by

Γ[φ], is a context where all the free occurrences of index existential variables have been

replaced by index terms.

100 CHAPTER 5. ALGORITHMIC TYPECHECKING

5.2.1 Soundness

To show that the algorithmic system is sound with respect to the original system, we

are given an algorithmic judgement, with an initial index context ∆1 and a final index

context ∆2, and φ as a solved extension of context ∆2, and hence dom(∆1) ⊆ dom(φ)

(by transitivity). Applying φ as a substitution to the given algorithmic judgement produces

a declarative judgement, which is the result we want to obtain.

Lemma 5.8 (Soundness of Type Formation). If ∆ . T : K and φ extends ∆, then ∆[φ] `
T [φ] : K[φ].

Proof. By rule induction on the derivation of the first hypothesis.

Lemma 5.9 (Soundness of Instantiation). If ∆1 ` â := i a ∆2 and â 6∈ FV(i[∆1]) and

i[∆1] = i and φ extends ∆2, then â[φ] = i[φ].

Proof. By rule induction on the derivation of the first hypothesis.

Case Q-SOLVE.

i 6= b̂ ∆3 |= i : I

∆3, â : I,∆4︸ ︷︷ ︸
∆1

` â := i a ∆3, â : I
.
= i,∆4︸ ︷︷ ︸

∆2

From the hypothesis i[∆1] = i and the fact that ∆2 contains a solution for â, we have

â[∆2] = i[∆2]. By definition of context extension, we have dom(∆2) ⊆ dom(φ). Apply φ

to each side to conclude â[φ] = i[φ].

Case Q-SOLVEEX.

∆1 |= b̂ : I b̂ ∈ unsolved(∆3 ∪∆4)

∆3, â : I,∆4︸ ︷︷ ︸
∆1

` â := b̂︸︷︷︸
i

a (∆3, â : I,∆4){b̂←[â}︸ ︷︷ ︸
∆2

By definition, â[∆2] = b̂[∆2]. Apply φ to each side to conclude â[φ] = b̂[φ].

Lemma 5.10 (Soundness of Index Equivalence). If ∆1 ` i ≡ j a ∆2 and φ extends ∆2,

then ∆2[φ] |= i[φ]
.
= j[φ]. (And similarly for ∆1 ` ī ≡ j̄ a ∆2.)

Proof. By rule induction on the derivation of the first hypothesis.

Lemma 5.11 (Soundness of Context Formation). If ∆ . Γ and φ extends ∆, then ∆[φ] `
Γ[φ].

Proof. By rule induction on the derivation of the first hypothesis.

5.2. CORRECTNESS OF THE ALGORITHMIC SYSTEM 101

Theorem 5.12 (Soundness of Algorithmic Subtyping). If ∆1 . T : ? and ∆1 . U : ?

and T [∆1] = T and U [∆1] = U and ∆1 ` T <: U a ∆2 and φ extends ∆2, then

∆2[φ] ` T [φ] <: U [φ].

Proof. By rule induction on the derivation of ∆1 ` T <: U a ∆2.

Case AS-SUPER.

class C : (ā : Ī) extends V { } is { } ∆1 ` V [̄i/ā] <: Dj̄ a ∆2 C 6= D

∆1 ` Cī <: Dj̄ a ∆2

Notice that the class declaration and the rules for program formation imply that V is of

the form Bī′. Use the fact that the hypothesis ∆1 . Cī : ? is derived by an application of

rule AK-CLASS, possibly followed by rule AK-APP applied as many times as needed, to

build ∆1 |= ī : Ī , which can be used to derive ∆1 . V [̄i/ā] : ?. From this, the hypothesis

∆1 . Dj̄ : ? and the second premise of rule AS-SUPER, use the induction hypothesis in

order to obtain ∆2[φ] ` (V [̄i/ā])[φ] <: Dj̄[φ]. Then use Lemma 4.13 (Agreement of

Judgements) to get ∆2[φ] ` (V [̄i/ā])[φ] : ?, and from that build ∆2 ` ī′ : Ī ′ (using rule

K-CLASS and possibly K-APP). Apply S-SUPER to the class declaration above together

with these two results in order to deduce ∆2[φ] ` Cī[φ] <: (V [̄i/ā])[φ]. Conclude from

this by using rule S-TRANS with the subtyping judgement obtained above.

Case AS-TOP.

∆1 . U
◦ : ?

∆1 ` U◦ <: Top a ∆2

Then ∆2 = ∆1, and hence dom(∆1) ⊆ dom(φ). From the hypothesis, we have ∆1 .

Top : ?. Use the induction hypothesis in order to obtain ∆1[φ] ` U◦[φ] <: Top. Apply

rule AS-TOP to get ∆1 ` Top <: Top a ∆1. Then use the induction hypothesis again to

obtain ∆1[φ] ` Top <: Top. Conclude by applying rule S-TRANS to the two subtyping

judgements obtained above.

Case AS-APP.

∆1 ` ī ≡ j̄ a ∆2

∆1 ` Cī <: Cj̄ a ∆2

Use Lemma 5.10 (Soundness of Index Equivalence) in order to obtain ∆2[φ] |= ī[φ]
.
= j̄[φ].

From the hypothesis, we have ∆1 . Cj̄ : ?. Use Lemma 5.8 (Soundness of Type Forma-

tion) to get ∆2[φ] ` Cj̄[φ] : ?. Conclude by applying rule S-APP.

Case AS-ΠL.

∆1, â : I ` V [â/a] <: U a ∆2

∆1 ` Πa : I.V <: U a ∆2

102 CHAPTER 5. ALGORITHMIC TYPECHECKING

Given the first hypothesis ∆1 . Πa : I.V : ?, apply substitution to obtain ∆1, â : I .

V [â/a] : ?. By weakening on the second hypothesis, ∆1, â : I . U : ?. Use the induction

hypothesis to get (∆2, â : I)[φ] ` (V [â/a])[φ] <: U [φ]. By substitution, obtain ∆2[φ] `
i : I , and conclude by using weakening and rule S-ΠL.

Case AS-ΠR.

∆1, a : I ` T <: V a ∆2

∆1 ` T <: Πa : I.V a ∆2

Use the first hypothesis and weakening to get ∆1, a : I . T : ?. From the second hypoth-

esis, we also have ∆1 . Πa : I.V : ? which is derived by rule AK-Π whose premise is

∆1, a : I . V : ?. Apply the induction hypothesis to obtain (∆2, a : I)[φ] ` T [φ] <: V [φ].

Conclude by using rule S-ΠR.

Case AS-ΣL.

∆1, a : I ` T1 <: U1 a ∆2

∆1 ` Σa : I.T1 <: U1 a ∆2

Similar to case AS-ΠR.

Case AS-ΣR.

∆1, â : I ` T <: U1[â/a] a ∆2

∆1 ` T <: Σa : I.U1 a ∆2

Similar to case AS-ΠL.

Case AS-+Rk.

∆1 ` U◦ <: Uk a ∆2

∆1 ` U◦ <: (U1 + U2) a ∆2

From the second hypothesis, we have ∆1 . (U1 + U2) : ?. Reading the premises of rule

AK-+, we also have ∆1 . Uk : ?. Use this and the first hypothesis ∆1 . U◦ : ? with

the induction hypothesis to obtain ∆1[φ] ` U◦[φ] <: Uk[φ]. Conclude by applying rule

S-+Rk.

The remaining cases are omitted, since they are similar to case AS-+Rk.

Theorem 5.13 (Soundness of Algorithmic Typing). Let φ be a complete index context

that extends ∆2.

1. If ∆1; Γ ` r ↑ T a ∆2, then ∆1[φ]; Γ[φ] ` r : T [φ] a ∆2[φ].

2. If ∆1; Γ1 ` t ↑ T a ∆2; Γ2, then ∆1[φ]; Γ1[φ] ∗ this ` t : T [φ] a ∆2[φ]; Γ2[φ] ∗ this.

3. If ∆1; Γ1 ` t ↓ T a ∆2; Γ2 and ∆1 . T : ?, then ∆1[φ]; Γ1[φ] ∗ this ` t : T [φ] a
∆2[φ]; Γ2[φ] ∗ this.

5.2. CORRECTNESS OF THE ALGORITHMIC SYSTEM 103

Proof. By rule induction on typing derivations. Parts 2 and 3 are proved together using

part 1. Much of this proof is just applying the induction hypothesis or the preceding lem-

mas to each premise to yield declarative judgements, followed by applying the appropriate

declarative rule. We show two cases, the remaining are similar.

Case AT-UNVAR.

∆1 . Γ un(T)

∆1; Γ, x : T︸ ︷︷ ︸
Γ1

` x ↑ T a ∆2; Γ, x : T︸ ︷︷ ︸
Γ2

Then ∆2 = ∆1, and hence dom(∆1) ⊆ dom(φ) by definition of context extension. Use

Lemma 5.11 (Soundness of Context Formation) to get ∆1[φ] ` Γ[φ]. From this and

un(T [φ]), conclude by applying rule T-UNVAR.

Case AT-SUB.

∆1; Γ1 ` t ↑ U a ∆3; Γ2 ∆3 ` U <: T a ∆2

∆1; Γ1 ` t ↓ T a ∆2; Γ2

Use the induction hypothesis on the first premise to obtain ∆1[φ]; Γ1[φ]∗ this ` t : U [φ] a
∆3[φ]; Γ2[φ] ∗ this. By inspection of the typing rules, dom(∆3) ⊆ dom(∆2), and hence

by transitivity dom(∆3) ⊆ dom(φ). From this, we have ∆1[φ]; Γ1[φ] ∗ this ` t : U [φ] a
∆2[φ]; Γ2[φ]∗ this. From the hypothesis (part 3), we also have ∆3 . T : ?. Use agreement

to get ∆3 . U : ?. Now, apply Theorem 5.12 (Soundness of Algorithmic Subtyping)

and the definition of index context extension in order to obtain ∆2[φ] ` U [φ] <: T [φ].

Conclude by applying rule T-SUB with the two declarative judgements obtained above.

5.2.2 Completeness

To prove completeness of the algorithmic system, we somehow do the reverse of sound-

ness: from a declarative derivation, which has no existential index variables, we obtain

a complete index context along an algorithmic derivation. In completeness of algorith-

mic subtyping, we are given an initial index context ∆1 and a complete index context

φ1 that extends it. In completeness of algorithmic typing, in addition we are given a fi-

nal context ∆′1 that may extend ∆1 (with the result of unpacking or with propositions,

for example) such that dom(∆1) ⊆ dom(∆′1) and dom(∆′1) = dom(φ1), and hence

dom(∆1) ⊆ dom(φ1). We show that we can build an algorithmic derivation with a fi-

nal context ∆2. However, the algorithmic rules generate fresh index variables that may

not be in ∆1,∆
′
1 or φ1. So, completeness will also produce a complete index context φ2

that extends both ∆2 and φ1 such that dom(∆2) = dom(φ2). Below, we outline the main

104 CHAPTER 5. ALGORITHMIC TYPECHECKING

results for instantiation, subtyping and typing; the detailed proofs are routine and there-

fore omitted.

Lemma 5.14 (Completeness of Instantiation). Let φ1 be a complete index context that

extends ∆1 such that dom(∆1) = dom(φ1) and ∆1 |= i : I and â ∈ unsolved(∆1) and

â 6∈ FV(i). If â[φ] = i[φ], then ∆1 ` â := i a ∆2 and there exists φ2 that extends both ∆2

and φ1 such that dom(∆2) = dom(φ2).

Proof. By induction on the shape of i.

Lemma 5.15 (Completeness of Index Equivalence). Let φ1 be a complete index context

that extends ∆1 such that dom(∆1) = dom(φ1). If ` ∆1[φ1] and ∆1[φ] |= i[φ]
.
= j[φ],

then ∆1 ` i[∆1] ≡ j[∆1] a ∆2 and there exists φ2 that extends both ∆2 and φ1 such that

dom(∆2) = dom(φ2).

Proof. By mutual induction on the shapes of i[∆1] and j[∆1].

Theorem 5.16 (Completeness of Algorithmic Subtyping). Let φ1 be a complete index

context that extends ∆1 such that dom(∆1) = dom(φ1). If ∆1[φ1] ` T [φ1] : ? and

∆1[φ1] ` U [φ1] : ? and ∆1[φ1] ` T [φ1] <: U [φ1], then ∆1 ` T [∆1] <: U [∆1] a ∆2

and there exists φ2 that extends both ∆2 and φ1 such that dom(∆2) = dom(φ2).

Proof. By rule induction on the derivation of ∆1[φ1] ` T [φ1] <: U [φ1].

Theorem 5.17 (Completeness of Algorithmic Typing). Let φ1 and ∆′1 be index contexts

that extend ∆1 such that dom(∆1) ⊆ dom(∆′1) and dom(∆′1) = dom(φ1).

1. If ∆1[φ1] ` T [φ1] : ? and ∆1[φ1]; Γ[φ1] ` r : T [φ1] a ∆′1[φ1], then ∆1; Γ[∆1] `
r : T [∆1] a ∆2 and there exists φ2 that extends both ∆2 and φ1 such that dom(∆2) =

dom(φ2).

2. If ∆1[φ1] ` T [φ1] : ? and ∆1[φ1]; Γ1[φ1] ∗ r1 ` t : T [φ1] a ∆′1[φ1]; Γ2[φ1] ∗ r2,

then depending on t either ∆1; Γ1[∆1] ` t ↑ T [∆1] a ∆2; Γ2[∆1] or ∆1; Γ1[∆1] `
t ↓ T [∆1] a ∆2; Γ2[∆1] and there exists φ2 that extends both ∆2 and φ1 such that

dom(∆2) = dom(φ2).

Proof. By rule induction on the derivation of the given typing judgement, with part 2

using part 1.

5.3 Implementation

We conclude this chapter with a brief description of the prototype implementation.

5.3. IMPLEMENTATION 105

Figure 5.9: Two examples of error reporting in DOL

106 CHAPTER 5. ALGORITHMIC TYPECHECKING

5.3.1 DOL IDE

Although development tools are popular in the context of object-oriented languages, their

use for dependently-typed languages is still new. Our prototype ships with an IDE (In-

tegrated Development Environment) developed as an Eclipse plugin based on the Xtext

[2017] framework. The IDE includes: a code editor assistant for DOL programs, on-the-

fly error checking, and target code generation in the form of of readable and pretty-printed

Java classes.

Our typechecker is a direct implementation of the algorithmic rules given in this chap-

ter, extended with integer and boolean literals, local variables and all the syntactic sugar

from the examples. It is developed in Xtend [2017], a flexible and expressive dialect

of Java. It uses a direct interface to Z3 [de Moura and Bjørner, 2008] via its API for

Java. Constraint checking is performed as part of typechecking (in all the places where |=
judgements occur), and is completely transparent to a programmer of DOL. The decid-

ability of our algorithmic system is dependent on the decidability of the solver. The use

of the IDE is evidence that DOL programs typecheck quickly: we run the typechecker

on the fly, i.e. whenever the program is modified, which leads us to believe that in the

decidable domain of integer inequalities our typechecking algorithm is efficient.

Eclipse interactively highlights not only syntax errors while the programmer is typing

but also compile time errors. We give two examples in Figure 5.9 that show the IDE

underlining the problematic text in the editor. The prototype can be found at http:

//rss.di.fc.ul.pt/tools/dol/.

5.3.2 Local Variables

In the implementation, we include local variables omitted from the formal language

(Chapter 3). These are declared by assignment. We therefore eliminate the extra bur-

den of having to explicitly declare these variables as required by most statically typed

languages. For example, we create a local variable by writing

var acc := new Account ()

Variable acc is declared by the initialisation from new Account(). As we have seen, DOL’s

type system allows instance variables (fields) to have different types at different points in

the program. We implement the same behaviour for local variables, allowing acc to have

many types as long as they are instances of the class family Account.

http://rss.di.fc.ul.pt/tools/dol/
http://rss.di.fc.ul.pt/tools/dol/

5.3. IMPLEMENTATION 107

5.3.3 Constraint Solving

Constraint solving lies at the heart of DOL’s typechecker, which verifies programs in a

fully automatic manner, without generating or requiring additional proofs; all constraints

are issued exclusively by types. The typechecker relies on Z3 to determine if each and

every constraint is valid under a list of assumptions corresponding to some ∆. It does this

by taking the negation of the constraint and passing it to Z3 under the list of satisfiable

assumptions. If the solver returns sat, then it found a counter-example, and the program

will be rejected. On the other hand, if Z3 returns unsat, then the constraint is valid. For

example, take the signature of method withdraw (Figure 2.1):

class Account 〈b : natural 〉 {
. . .
〈m: natural {m≤ b} 〉
[Account 〈b 〉 〈b−m〉]
withdraw (amount : I n tege r 〈m〉) =
. . .

}

Now, consider the following client code:

var acc := new Account () ;
acc . depos i t (100) ;
acc . withdraw (70) ;
acc . withdraw (30)

To check the last line, the typechecker calls the Z3 API for Java by providing the decla-

rations and formulas issued by types, which internally are translated into the appropriate

form. For the above example, the list of the typechecker provided formulas and declara-

tions is equivalent to the following script in the SMT-LIB 2.0 standard format:

(dec lare − const b I n t)
(dec lare − const m I n t)
(asser t (≥ b 0))
(asser t (and (≥ m 0) (≤ m b)))
(asser t (= b (− (+ 0 100) 70)))
(asser t (not (and (≥ 30 0) (≤ 30 b))))
(check − sat)

5.3.4 Error Reporting

Any compiler should catch errors as soon as they occur and provide meaningful messages

for them. The Xtext framework help us with the former. However, two features make it

difficult to deliver the latter: index constraints and union types.

108 CHAPTER 5. ALGORITHMIC TYPECHECKING

Types may contain fresh existential index variables internally, which complicate the

generation of comprehensible explanations during typechecking. However, we maintain

a map from existential index variables to the location where they were created. For ex-

ample, suppose that we call method acc.withdraw(30) as in the snippet above. We generate

fresh existential index variables for both b and m and put them in a map with the term

acc.withdraw(30). This will enable the compiler to report both the source of error as well

as its location. Then, we check if the existential index variables can be replaced by the

actual values (30 in the example). If typechecking fails, say, by calling acc.withdraw(40)

instead, we can report the line and the invalid constraint (40≤30 obtained by replacing

the existential index variables with the actual values).

In checking against a union type of the form T + U, we check first against T and if,

that fails, we check against U. Therefore, the compiler reports an error when both types

fail, indicating the source and location of the failure for T and for U.

Even with some space for improvement, the compiler seems to provide relatively ac-

curate and localised error reporting to which contributes both the quantifier instantiation

strategy [Dunfield and Krishnaswami, 2013, 2016] and the bidirectional typechecking

technique [Pierce and Turner, 2000].

Chapter 6

Related Work

In this chapter, we present the most important work on dependent types and closely related

approaches in the context of different programming languages, providing an overview of

the state of the art in this area of research, and comparing with the contributions of DOL.

Moreover, we provide references to alternative solutions to some of the problems we have

encountered during the design of DOL.

Chapter Outline. This chapter consists of the following sections:

• Section 6.1 discusses different approaches to dependent types.

• Section 6.2 presents other solutions to program verification.

• Section 6.3 analyses work on linear types.

• Section 6.4 points to alternative formulations to a linear type discipline.

6.1 Dependent Types

Index refinements have their origins in the notion of dependent type developed by Martin-

Löf [1984], and first applied to proof assistants (logical frameworks), the most important

of which are AUTOMATH [van Daalen, 1980], the Calculus of Constructions [Coquand

and Huet, 1988], NuPRL [Constable et al., 1986], Lego [Zhaohui and Pollack, 1992]

and the Edinburgh Logical Framework [Harper et al., 1993]. According to the original

formulation, dependent products and sums of the form Πx : U.T and Σx : U.T are types

indexed over the collection of terms x of arbitrary types U , unlike index refinements

that restrict the domain of the argument. The price, however, is increased complexity

of typechecking. When added to (possibly nonterminating) programming languages, the

109

110 CHAPTER 6. RELATED WORK

task of determining type equivalence becomes as difficult as determining term equivalence

(which is undecidable in general).

6.1.1 Full-spectrum Dependent Types

Some programming languages have managed to integrate full dependency by providing

different strategies to handle nonterminating programs. Cayenne [Augustsson, 1998] is a

functional programming language in the style of Haskell with an undecidable dependent

type system. A semi-decidable implementation is provided that forces the typechecker

to terminate within a number of prescribed steps, eventually providing the user with an

answer. In practice, the Cayenne approach requires that the programmer anticipates if an

equality will be resolved within a certain number of reductions.

Epigram [McBride, 2004] builds on a tactic-driven proof engine, similar to that of

the Coq proof assistant [The Coq development team], requiring correctness proofs to be

specified. Unlike Cayenne, Epigram rules out general recursive programs, avoiding non-

termination and any form of effects, thus making typechecking decidable. Recursion is

supported by the structure of dependent types which are inductive families with inductive

indices. Agda [Norell, 2007] is an extension of Martin-Löf’s intuitionistic type theory

in the spirit of Epigram. It supports the definition of inductive and inductive-recursive

data types and families, and it offers a powerful mechanism for dependently typed pat-

tern matching. The language requires all programs to be total, i.e. all possible patterns

must be matched, which is ensured by the termination checker. These languages rely on

propositions-as-types; proofs, oftentimes complex, must be provided by programmers. In

this sense, DOL offers a more high-level programming style. As DOL, these languages

support programming with indexed types.

6.1.2 Domain-specific Logics

Dependent types have proved quite useful for enriching host languages with domain-

specific logic. The Ynot tool is an extension of the functional dependently-typed lan-

guage included in Coq providing support for side-effects via Hoare Type Theory (HTT)

and Separation Logic [Nanevski et al., 2008b,a]. HTT introduces an indexed monadic

type in the style of a Hoare triple to reason about mutation. While DOL’s varying types

may have similarities with the Hoare type, our approach does not involve the complexity

of higher-order abstraction. As HTT, the F* language [Swamy et al., 2016], designed

for program verification, employs the monad technique generalising it to multiple mon-

ads. This ML-style functional language uses dependent and refinement types to specify

effectful programs, and supports automated and interactive proofs. A related approach

6.1. DEPENDENT TYPES 111

is provided by RSP1 [Westbrook et al., 2005] that allows programming with proofs in

an imperative setting. The language offers decidable typechecking by banning impure

operations from types with the purpose of letting the user prove arbitrary properties of

programs. All these languages provide SMT-based automation and handle effectful pro-

gramming. In that regard, they are close to DOL, yet they differ substantially in their aim

to combine programming and theorem proving, which our language does not support.

Targeting the C programming language, Deputy [Condit et al., 2007] also handles

mutation using a Hoare-inspired typing rule ensuring that assignment results in a well-

typed state. For decidability, Deputy combines compile time and runtime checking, as

opposed to our approach in which typechecking is performed statically, relying on the

assistance of an external SMT solver.

6.1.3 Languages with Phase Separation

The idea of refinement types proposed by Freeman and Pfenning [1991] as an extension to

ML with union and intersection types is a precursor of index refinements. The approach

was further developed into a weaker, decidable version of dependent types: index refine-

ments as formulated by Xi and Pfenning [1999] reduce typechecking to a constraint sat-

isfaction problem on terms belonging to index sorts. Their approach (which we build on)

offers the additional advantage of relative simplicity of the type system, as well as requir-

ing fewer annotations, when compared to full dependent type systems. Xi later formulated

Xanadu [Xi, 2000], a language with a C-like syntax combining imperative programming

with index refinements, and ATS [Xi, 2004] which also supports DML-style dependent

types. While closely related, DOL extends the ideas of Xanadu to class-based objects

that exhibit state and behaviour. Our language also handles object-oriented programming

features such as modular development, inheritance with subtyping, which Xanadu does

not deal with. A proposal for building an object-oriented system on top of DML was

also formulated by Xi [2002]. The language includes inheritance without subtyping – the

relation is simulated via existentially quantified dependent types. Xi’s object model is

simpler than ours, since objects are not regarded as records of fields (they merely respond

to messages), and the language does not include imperative features.

Ωmega [Sheard and Linger, 2007] and Liquid Types [Rondon et al., 2008] offer two

more examples of functional languages with a strict phase separation; the latter is im-

plemented in DSolve, a tool that automatically infers dependent types from an OCaml

program and a set of logical qualifiers. Cyclone [Jim et al., 2002] is a type-safe extension

of the C programming language, combining static analysis and runtime checks. It offers

domain-specific indexed types, but for the purpose of safe multi-threading and memory

112 CHAPTER 6. RELATED WORK

management.

Another reference is Dependent JavaScript (DJS) [Chugh et al., 2012], which intro-

duces refinement types with predicates from an SMT-decidable logic in a dynamic real-

world language. In DJS, imperative updates involve the presence of mutation: the types

of variables are changed by assignment, for instance, as in DOL. The challenge is handled

using flow-sensitive heap types, which allow tracking variable types, in combination with

refinement types. The result is an increase in the language expressiveness by using type

annotations inside JavaScript comments that account for side-effects. DJS employs the

alias types approach [Smith et al., 2000] for strong updates in combination with thaw-

ing/freezing locations. A similar formulation could be used as a powerful alternative to

the simple linear treatment that we include in DOL.

6.1.4 Other Forms of Dependent Types

Other forms of dependent types include X10’s constrained types [Nystrom et al., 2008],

designed around the notion of constraints on the immutable state of objects. The core lan-

guage proposed extends the purely functional FJ [Igarashi et al., 2001]. While appealing,

constrained types cannot enforce invariants on mutable state. Another approach in the

object-oriented setting is provided by dependent classes [Gasiunas et al., 2007]. A class

can be seen as forming a family of collaborating objects, much like a type family in tra-

ditional dependent type theory. The model is complex, since it also involves inheritance,

and type soundness is hard to prove. Like DOL, dependent classes and its lightweight

version [Kamina and Tamai, 2008] support class-based programming and inheritance. A

similar model is provided by Scala’s path-dependent types, with a type-theoretic founda-

tion in the DOT calculus [Amin, 2016, Rompf and Amin, 2016], that unify nominal and

structural type systems by allowing objects to contain type members. Dependent types

in this model are expressed not in type signatures but in type placements. An abstract

type refers to a type that must be defined by subclasses, becoming dependent on the in-

stance it refers to. Unlike DOL, none of these languages supports an imperative style of

programming, whereas DOL is designed to handle mutable objects.

6.2 Other Approaches to Program Verification

Other approaches include advanced techniques for verifying software properties. As-

sertions are one of the most useful mechanisms, also serving for documenting code. Any

boolean predicate can be used to check software properties, which makes statically check-

ing assertions undecidable in general. The pre- and post-types in DOL can be seen as a

6.3. AFFINE TYPES 113

(decidable) alternative to a pair of assertions.

The extended static checker for JML (ESC/Java) [Leino, 2001] and related systems

are effective in finding bugs in Java programs. ESC provides a simple language of an-

notations and uses an underlying automatic theorem prover to reason about program be-

haviour and to verify the absence of certain kinds of errors, such as array-out-of-bounds

and null pointer dereference. The tool is based on an approach which is neither sound nor

complete. However, by combining a range of techniques, it is more expressive than index

refinements.

Spec] [Barnett et al., 2005] uses a sound programming methodology to check C] pro-

grams, which allows reasoning about object invariants even in a multi-threaded setting.

Many of the ideas described by Müller [2002], Barnett et al. [2004], Müller et al. [2006],

Summers and Drossopoulou [2010], Balzer and Gross [2011] for the verification of in-

variants for objects have been implemented in Spec].

A vast number of tools provide static program verifiers for object-oriented languages

relying on various external theorem provers to discharge verification conditions. Boo-

gie [Barnett et al., 2006] is one such tool meant for Spec] programs. In the same spirit,

Why3 [Filliâtre and Paskevich, 2013] uses WhyML, a first-order specification and pro-

gramming language, as an intermediate language for the verification of C, Java and Ada

programs. This is somewhat different from other verification systems where a general

purpose language is usually equipped with a specification language. These systems can

verify invariants, track mutable references, aliases and side effects statically. While for-

mal verification is more expressive than dependent types, it is also more complex, and

still too costly for mainstream adoption. Language-based verification methods, such as

the one we propose in DOL via types, are closer to existing programming methodologies.

The main benefit of our approach is to provide lightweight verification without requiring

prior training in logic or theorem proving.

A number of techniques also introduces separation logic [Reynolds, 2002], a sub-

structural logic that augments the type system with the ability to control the number and

order of uses of data structures, and has proved useful for object-oriented languages in

the presence of shared mutable state [Parkinson and Bierman, 2013]. Some of these ad-

vanced techniques for the verification of objects could in principle be used to enrich our

language.

6.3 Affine Types

In order to demonstrate how dependently typed objects would work in practice in a high-

level object-oriented programming language, we have taken a simple approach to alias

114 CHAPTER 6. RELATED WORK

control that extends the work of Gay et al. [2015]: we add a linear discipline through

which instances of type varying classes cannot be duplicated, while allowing instances of

type invariant classes to be handled without restrictions.

A more sophisticated mechanism to regulate the usage of resources seems orthogo-

nal, but it can be found in Alms, a language in the style of OCaml with an affine type

system, developed by Tov and Pucella [2011]. Alms is a language with general-purpose

substructural type system that can express a variety of stateful type disciplines and, like

DOL, also supports interacting with shared types. It has been implemented, and proved

sound. Adapting this approach to our language would require encoding affine capabilities

in DOL, rather than conveniently assigning a qualifier to a type based on the form of its

class.

6.4 Ownership of Objects

Adding a better access control to DOL via a sophisticated alias analysis would also scale

the current design up to a broader variety of practical programming examples. There is

a vast literature on mechanisms that provide such a flexibility, namely Hogg [1991]’s Is-

lands, Almeida [1997]’s balloon types and [Clarke et al., 1998]’s ownership types, which,

differing substantially in technique, allow the use of linked data structures encapsulated

within Islands and Balloons, while providing non-aliasing guarantees to the rest of the

systems. Other works include Fähndrich and DeLine [2002]’s adoption and focus, Aiken

et al. [2003]’s restrict and confine and Morrisett et al. [2005]’s freeze, thaw and refreeze in

the L3 language, influenced by Smith et al. [2000]’s Alias Types. The freeze/thaw/refreeze

approach is similar in role to both the adoption/focus and the restrict /confine mechanisms

in the sense that they introduce some notion of linearity and a way to express aliasing

invariants.

While these solutions are not implemented in DOL, they should be valuable for future

work towards making the language more suitable for production use. What we need is a

property for performing the controlled duplication of references to mutable objects. The

process that allows “thawing” a reference, so that it can be strongly updated, and then re-

freezing it, once the original type has been restored, may allow reasoning about aliasing

patterns and should integrate well with DOL’s type system.

Chapter 7

Conclusion

This thesis describes DOL, a programming language with a restricted form of dependent

types, designed to support the verification of class-based object-oriented programs featur-

ing mutable objects and inheritance with subtyping.

We have formalised the syntax, type system and operational semantics (Chapter 3).

We have proved that the system enjoys a key beneficial property, type soundness via

subject reduction and progress (Chapter 4). We have also given a set of algorithmic typing

rules, ready for implementation, and proved that the algorithmic system is sound and

complete with respect to the declarative system (Chapter 5).

The design of DOL combines the scalability and modularity of object orientation with

the safety provided by dependent types, sometimes blurring the lines of programming

paradigms:

1. DOL uses the style of generic programming of Java-like languages to introduce

dependent types through indexed classes – families of classes that can have many

types – so as to simplify object-oriented programming with dependent types;

2. The approach, based on index refinements, renders the type system decidable, pro-

vided indices are drawn from some decidable theory, while still being able to ex-

press interesting properties of programs;

3. Features of the functional paradigm are present when they need to be, namely by the

use of a null-free style of programming, even though programs in DOL are typically

structured using mutable objects and class-based inheritance;

4. The type system tracks changes to type varying objects and enforces a linear type

discipline without the need for awkward qualifier annotations.

These language features together form a coherent and natural design for a safer object-

oriented language, where the effort of programming with dependent types is to come up

115

116 CHAPTER 7. CONCLUSION

with the right types, as evidenced by the technically challenging example of a binary

search tree implemented in imperative style (Chapter 2).

In addition, the proof-of-concept prototype attests the relevance of the language de-

scribed in this thesis. It includes a plugin for the Eclipse IDE, a development tool that

is widely used in the context of object-oriented languages but still new for dependently-

typed languages.

However, much work remains to be done. Towards a more effective object-oriented

language with dependent types, suitable for production use, the main topics to study are

the integration of richer index languages in domains of interest, possibly at the cost of

decidable typechecking, and alternatives to the current strategy for handling aliases.

Bibliography

Alex Aiken, Jeffrey S. Foster, John Kodumal, and Tachio Terauchi. Checking and infer-

ring local non-aliasing. In PLDI, pages 129–140. ACM Press, 2003.

Paulo Sérgio Almeida. Balloon types: Controlling sharing of state in data types. In

ECOOP, volume 1251 of LNCS, pages 32–59. Springer, 1997.

Nada Amin. Dependent Object Types. PhD thesis, École Polytechnique Fédérale de

Lausanne, 2016.

Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Giuseppe Castagna,

Pierre-Malo Deniélou, Simon J. Gay, Nils Gesbert, Elena Giachino, Raymond

Hu, Einar Broch Johnsen, Francisco Martins, Viviana Mascardi, Fabrizio Montesi,

Rumyana Neykova, Nicholas Ng, Luca Padovani, Vasco T. Vasconcelos, and Nobuko

Yoshida. Behavioral types in programming languages. Foundations and Trends R© in

Programming Languages, 3(2-3):95–230, 2016.

David Aspinall and Adriana B. Compagnoni. Subtyping dependent types. In IEEE Press,

pages 86–97, 1996.

Lennart Augustsson. Cayenne a language with dependent types. In ICFP, pages 239–250.

ACM Press, 1998.

Stephanie Balzer and Thomas R. Gross. Verifying multi-object invariants with relation-

ships. In ECOOP, pages 358–382. Springer, 2011.

Hendrik Pieter Barendregt. The Lambda Calculus – Its Syntax and Semantics, volume

103 of Studies in Logic and the Foundations of Mathematics. North-Holland, 1984.

Michael Barnett, Robert DeLine, Manuel Fähndrich, K. Rustan M. Leino, and Wolfram

Schulte. Verification of object-oriented programs with invariants. Journal of Object

Technology, 3(6):27–56, 2004.

117

118 BIBLIOGRAPHY

Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# programming sys-

tem: An overview. In Construction and Analysis of Safe, Secure and Interoperable

Smart devices, pages 49–69, 2005.

Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M.

Leino. Boogie: A modular reusable verifier for object-oriented programs. In Con-

ference on Formal Methods for Components and Objects, pages 364–387. Springer,

2006.

Gavin M. Bierman, Erik Meijer, and Mads Torgersen. Lost in translation: Formalizing

proposed extensions to C#. In OOPSLA, pages 479–498. ACM Press, 2007.

Gavin M. Bierman, Andrew D. Gordon, Cătălin Hriţcu, and David Langworthy. Semantic

subtyping with an SMT solver. In ICFP, pages 105–116. ACM Press, 2010.

Ana Bove, Peter Dybjer, and Ulf Norell. A brief overview of Agda – A functional

language with dependent types. In TPHOLs, volume 5674 of LNCS, pages 73–78.

Springer, 2009.

Edwin Brady. Idris, a general-purpose dependently typed programming language: Design

and implementation. Journal of Functional Programming, 23:552–593, 2013.

Joana Campos and Vasco T. Vasconcelos. Imperative objects with dependent types. In

Formal Techniques for Java-like Programs, pages 2:1–2:6, 2015.

Joana Campos and Vasco T. Vasconcelos. Programming with mutable objects and depen-

dent types. In INForum. Atas do Oitavo Simpósio de Informática, 2016.

Patrice Chalin and Perry R. James. Non-null references by default in Java: Alleviating

the nullity annotation burden. In ECOOP, pages 227–247. Springer, 2007.

Ravi Chugh, David Herman, and Ranjit Jhala. Dependent types for JavaScript. In OOP-

SLA, pages 587–606. ACM Press, 2012.

Maciej Cielecki, Jȩdrzej Fulara, Krzysztof Jakubczyk, and Lukasz Jancewicz. Propa-

gation of jml non-null annotations in Java programs. In Principles and Practice of

Programming in Java, pages 135–140. ACM Press, 2006.

David G. Clarke, John M. Potter, and James Noble. Ownership types for flexible alias

protection. In OOPSLA, pages 48–64. ACM Press, 1998.

Jeremy Condit, Matthew Harren, Zachary R. Anderson, David Gay, and George C. Nec-

ula. Dependent types for low-level programming. In ESOP, volume 4421 of LNCS,

pages 520–535. Springer, 2007.

BIBLIOGRAPHY 119

Robert L. Constable, Stuart F. Allen, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F.

Cremer, R. W. Harper, Douglas J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden,

Scott F. Smith, James T. Sasaki, and S. F. Smith. Implementing mathematics with the

Nuprl proof development system. Prentice Hall, 1986.

Thierry Coquand and Gérard P. Huet. The calculus of constructions. Inf. Comput., 76

(2/3):95–120, 1988.

Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In Tools

and Algorithms for the Construction and Analysis of Systems, volume 4963 of LNCS,

pages 337–340. Springer, 2008.

Krishna Kishore Dhara and Gary T. Leavens. Forcing behavioral subtyping through spec-

ification inheritance. In International Conference on Software Engineering, pages 258–

267, 1996.

Joshua Dunfield. A Unified System of Type Refinements. PhD thesis, Carnegie Mellon

University, 2007. CMU-CS-07-129.

Joshua Dunfield and Neelakantan R. Krishnaswami. Complete and easy bidirectional

typechecking for higher-rank polymorphism. In ICFP, pages 429–442. ACM Press,

2013.

Joshua Dunfield and Neelakantan R. Krishnaswami. Sound and complete bidirectional

typechecking for higher-rank polymorphism with existentials and indexed types. CoRR,

abs/1601.05106, 2016.

Joshua Dunfield and Frank Pfenning. Type assignment for intersections and unions in call-

by-value languages. In Foundations of Software Science and Computational Structures,

volume 2620 of LNCS, pages 250–266. Springer, 2003.

Eclipse. Eclipse IDE, 2017. http://www.eclipse.org/.

Manuel Fähndrich and Robert DeLine. Adoption and focus: Practical linear types for

imperative programming. In PLDI, pages 13–24. ACM Press, 2002.

Manuel Fähndrich and K. Rustan M. Leino. Declaring and checking non-null types in an

object-oriented language. In OOPSLA, pages 302–312. ACM Press, 2003.

Jean-Christophe Filliâtre and Andrei Paskevich. Why3 - where programs meet provers.

In ESOP, volume 7792 of LNCS, pages 125–128. Springer, 2013.

Cormac Flanagan. Hybrid type checking. In POPL, pages 245–256, 2006.

http://www.eclipse.org/

120 BIBLIOGRAPHY

Tim Freeman and Frank Pfenning. Refinement types for ML. In PLDI, pages 268–277.

ACM Press, 1991.

Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann. Dependent classes. In OOPSLA,

pages 133–152. ACM Press, 2007.

Simon J. Gay, Nils Gesbert, António Ravara, and Vasco Thudichum Vasconcelos. Modu-

lar session types for objects. Logical Methods in Computer Science, 11(4), 2015.

Andrew D. Gordon and Cédric Fournet. Principles and applications of refinement types.

In Logics and Languages for Reliability and Security, pages 73–104. IOS Press, 2010.

Robert Harper, Furio Honsell, and Gordon D. Plotkin. A framework for defining logics.

J. ACM, 40(1):143–184, 1993.

Tony Hoare. Null references: The billion dollar mistake. QCon, 2009.

John Hogg. Islands: Aliasing protection in object-oriented languages. In OOPSLA, pages

271–285. ACM Press, 1991.

Atsushi Igarashi and Hideshi Nagira. Union types for object-oriented programming. In

Symposium on Applied Computing, pages 1435–1441. ACM Press, 2006.

Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a minimal

core calculus for Java and GJ. TOPLAS, 23(3):396–450, 2001.

Trevor Jim, J. Gregory Morrisett, Dan Grossman, Michael W. Hicks, James Cheney, and

Yanling Wang. Cyclone: A safe dialect of C. In USENIX, pages 275–288. USENIX,

2002.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Wirich, and Mark Shields. Practical

type inference for arbitrary-rank types. Journal of Functional Programming, 17(1):

1–82, 2007.

Tetsuo Kamina and Tetsuo Tamai. Lightweight dependent classes. In GPCE, pages 113–

124. ACM Press, 2008.

Kenneth Knowles, Aaron Tomb, Jessica Gronski, S Freund, and Cormac Flanagan. Sage:

Unified hybrid checking for first-class types, general refinement types and dynamic.

Technical report, UCSC, Santa Cruz, CA, 2007.

Kenneth L. Knowles. Executable Refinement Types. PhD thesis, University of California,

2014.

BIBLIOGRAPHY 121

Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML: A be-

havioral interface specification language for Java. SIGSOFT Softw. Eng. Notes, 31(3):

1–38, 2006.

K. Rustan M. Leino. Extended static checking: A ten-year perspective. In Informatics –

10 Years Back. 10 Years Ahead, volume 2000 of LNCS, pages 157–175. Springer, 2001.

Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of subtyping. TOPLAS,

16(6):1811–1841, 1994.

William Lovas and Frank Pfenning. A bidirectional refinement type system for LF. Elec-

tron. Notes Theor. Comput. Sci., 196:113–128, 2008.

Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis-Napoli, 1984.

Conor McBride. Epigram: Practical programming with dependent types. In Advanced

Functional Programming, volume 3622 of LNCS, pages 130–170. Springer, 2004.

Conor McBride. How to keep your neighbours in order. In ICFP, pages 297–309. ACM

Press, 2014.

Greg Morrisett, Amal Ahmed, and Matthew Fluet. L3: A linear language with locations.

In Typed Labmda Calculi and Applications, pages 293–307. Springer, 2005.

Peter Müller. Modular Specification and Verification of Object-Oriented Programs, vol-

ume 2262 of LNCS. Springer, 2002.

Peter Müller, Arnd Poetzsch-Heffter, and Gary T. Leavens. Modular invariants for layered

object structures. Sci. Comput. Program., 62(3):253–286, 2006.

Aleksandar Nanevski, Greg Morrisett, Avraham Shinnar, Paul Govereau, and Lars

Birkedal. Ynot: dependent types for imperative programs. In ICFP, pages 229–240,

2008a.

Aleksandar Nanevski, J. Gregory Morrisett, and Lars Birkedal. Hoare type theory, poly-

morphism and separation. Journal of Functional Programming, 18(5-6):865–911,

2008b.

Ulf Norell. Towards a practical programming language based on dependent type theory.

PhD thesis, Department of Computer Science and Engineering, Chalmers University of

Technology, 2007.

Nathaniel Nystrom, Vijay Saraswat, Jens Palsberg, and Christian Grothoff. Constrained

types for object-oriented languages. In OOPSLA, pages 457–474. ACM Press, 2008.

122 BIBLIOGRAPHY

Martin Odersky, Christoph Zenger, and Matthias Zenger. Colored local type inference. In

POPL, pages 41–53. ACM Press, 2001.

Matthew J. Parkinson and Gavin M. Bierman. Separation logic for object-oriented pro-

gramming. In Aliasing in Object-Oriented Programming. Types, Analysis and Verifica-

tion, volume 7850 of LNCS, pages 366–406. Springer, 2013.

Benjamin C. Pierce. Types and programming languages. MIT Press, 2002.

Benjamin C. Pierce and David N. Turner. Local type inference. ACM Trans. Program.

Lang. Syst., 22(1):1–44, 2000.

John C. Reynolds. Separation logic: A logic for shared mutable data structures. In LICS,

pages 55–74. IEEE Press, 2002.

Tiark Rompf and Nada Amin. Type soundness for dependent object types (dot). In

OOPSLA, pages 624–641. ACM Press, 2016.

Patrick M. Rondon, Ming Kawaguci, and Ranjit Jhala. Liquid types. In PLDI, pages

159–169. ACM Press, 2008.

Tim Sheard and Nathan Linger. Programming in Omega. In Central European Functional

Programming School, volume 5161 of LNCS, pages 158–227. Springer, 2007.

Frederick Smith, David Walker, and J. Gregory Morrisett. Alias types. In ESOP, volume

1782 of LNCS, pages 366–381. Springer, 2000.

Alexander J. Summers and Sophia Drossopoulou. Considerate reasoning and the com-

posite design pattern. In Verification, Model Checking, and Abstract Interpretation,

volume 5944 of LNCS, pages 328–344. Springer, 2010.

Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud,

Simon Forest, Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves Strub, Markulf

Kohlweiss, Jean-Karim Zinzindohoue, and Santiago Zanella-Béguelin. Dependent

types and multi-monadic effects in F*. In POPL, pages 256–270. ACM Press, 2016.

The Coq development team. The Coq proof assistant reference manual, version 8.6, 2016.

URL https://coq.inria.fr/refman/.

Jesse A. Tov and Riccardo Pucella. Practical affine types. In POPL, pages 447–458. ACM

Press, 2011.

Diederik T. van Daalen. The Language Theory of Automath. PhD thesis, Technische

Hogeschool Eindhoven,Eindhoven, 1980.

https://coq.inria.fr/refman/

BIBLIOGRAPHY 123

Edwin Westbrook, Aaron Stump, and Ian Wehrman. A language-based approach to func-

tionally correct imperative programming. In ICFP, LNCS, pages 268–279. ACM Press,

2005.

Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. In-

formation and Computation, 115(1):38–94, 1994.

Hongwei Xi. Dependent Types in Practical Programming. PhD thesis, Carnegie Mellon

University, Pittsburgh, 1998.

Hongwei Xi. Imperative programming with dependent types. In LICS, pages 375–387.

IEEE Press, 2000.

Hongwei Xi. Unifying object-oriented programming with typed functional programming.

In PEPM, pages 117–125. ACM Press, 2002.

Hongwei Xi. Applied type system: Extended abstract. In TYPES, pages 394–408.

Springer, 2004.

Hongwei Xi. Dependent ML: an approach to practical programming with dependent

types. Journal of Functional Programming, 17(2):215–286, 2007.

Hongwei Xi and Frank Pfenning. Eliminating array bound checking through dependent

types. In PLDI, pages 249–257. ACM Press, 1998.

Hongwei Xi and Frank Pfenning. Dependent types in practical programming. In POPL,

pages 214–227. ACM Press, 1999.

Xtend. Xtend programming language, 2017. https://www.eclipse.org/

xtend/.

Xtext. Xtext framework, 2017. http://eclipse.org/Xtext/.

Luo Zhaohui and Robert Pollack. The LEGO proof development system: A user’s man-

ual. Technical Report ECS-LFCS-92-211, University of Edinburgh, 1992.

https://www.eclipse.org/xtend/
https://www.eclipse.org/xtend/
http://eclipse.org/Xtext/

	Abstract
	Resumo
	Acknowledgements
	Contents
	List of Figures
	List of Judgements
	Introduction
	Overview
	Reader’s Guide

	DOL by Example
	Indexed Classes
	Bank Account
	State Modifying Methods
	Base Types and Literals
	Controlled Aliasing
	Inheritance and Subtyping

	Binary Search Tree
	BST Insertion
	BST Deletion

	DOL Code Example: Binary Search Tree

	The DOL Language
	Syntax
	Types
	Terms
	Index Refinements
	Additional Syntax Not Available to Programmers

	Static Semantics
	Index Typing
	Index Substitution
	Kinding
	Subtyping
	Auxiliary Functions and Predicates
	Term Typing
	Program Typing
	Runtime Term Typing

	Operational Semantics

	Type Soundness
	State and Heap Typing
	Properties of Typing
	Inversion
	Exchange and Weakening
	Substitution
	Agreement
	Soundness of Function mtype

	Hiding Field Typings
	Properties of Evaluation Contexts
	Subject Reduction
	Progress

	Algorithmic Typechecking
	Algorithmic Type System
	Algorithmic Type Formation
	Quantifier Instantiation
	Algorithmic Subtyping
	Bidirectional Typechecking

	Correctness of the Algorithmic System
	Soundness
	Completeness

	Implementation
	DOL IDE
	Local Variables
	Constraint Solving
	Error Reporting

	Related Work
	Dependent Types
	Full-spectrum Dependent Types
	Domain-specific Logics
	Languages with Phase Separation
	Other Forms of Dependent Types

	Other Approaches to Program Verification
	Affine Types
	Ownership of Objects

	Conclusion
	Bibliography

